
Journal of Management Information Systems / Summer 2007, Vol. 24, No. 1, pp. 135–169.

© 2007 M.E. Sharpe, Inc.

0742–1222 / 2007 $9.50 + 0.00.

DOI 10.2753/MIS0742-1222240104

Team Knowledge and Coordination in
Geographically Distributed Software
Development

J. ALBERTO ESPINOSA, SANDRA A. SLAUGHTER,
ROBERT E. KRAUT, AND JAMES D. HERBSLEB

J. ALBERTO ESPINOSA is an Assistant Professor of Information Technology and UPS
Scholar at the Kogod School of Business at American University. He received his Ph.D.
in Information Systems from the Tepper School of Business at Carnegie Mellon Uni-
versity. His research focuses on understanding how teams coordinate across geographic
and global boundaries and which team processes and information technologies are
most effective in bridging these boundaries to achieve high levels of performance. His
current research areas include global software and technical teams, team knowledge,
team coordination, and spatial and temporal boundaries.

SANDRA A. SLAUGHTER is an Associate Professor in the Tepper School of Business at
Carnegie Mellon University. Prior to joining the faculty at Carnegie Mellon University,
Dr. Slaughter worked in industry as a project manager and systems analyst at Hewlett-
Packard, Rockwell International, and Square D Corporation. She has consulted with
the Information Technology Management Association and with several companies
on software design and development-related issues. Her research is motivated by her
experience in software development and focuses on the performance implications of
software design and development decisions. Currently, she is conducting research
funded by the National Science Foundation on project management practices and
software design and evolution. She has also commenced new projects that explore
capabilities and performance in information technology outsourcing.

ROBERT E. KRAUT is Herbert A. Simon Professor of Human–Computer Interaction at
Carnegie Mellon University. He received his Ph.D. in Social Psychology from Yale
University in 1973, and previously taught at the University of Pennsylvania and at
Cornell University. He was a research scientist at AT&T Bell Laboratories and Bell
Communications Research for 12 years. Dr. Kraut has broad interests in the design
and social effect of computing and conducts research on everyday use of the Inter-
net, technology and conversation, collaboration in small work groups, computing in
organizations, and contributions to online communities.

JAMES D. HERBSLEB is an Associate Professor of Computer Science and the Direc-
tor of the Software Industry Center at Carnegie Mellon University. He received his
Ph.D. and J.D. from the University of Nebraska, and his M.S. in computer science
from the University of Michigan, where he also completed a postdoctoral fellowship.
His research focuses on coordination in software engineering, especially in globally
distributed and open source software projects, as well as coordination in collaborative
work more generally.

04 espinosa.indd 13504 espinosa.indd 135 7/23/2007 10:17:23 AM7/23/2007 10:17:23 AM

136 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

ABSTRACT: Coordination is important in software development because it leads to ben-
efi ts such as cost savings, shorter development cycles, and better-integrated products.
Team cognition research suggests that members coordinate through team knowledge,
but this perspective has only been investigated in real-time collocated tasks and we
know little about which types of team knowledge best help coordination in the most
geographically distributed software work. In this fi eld study, we investigate the co-
ordination needs of software teams, how team knowledge affects coordination, and
how this effect is infl uenced by geographic dispersion. Our fi ndings show that soft-
ware teams have three distinct types of coordination needs—technical, temporal, and
process—and that these needs vary with the members’ role; geographic distance has
a negative effect on coordination, but is mitigated by shared knowledge of the team
and presence awareness; and shared task knowledge is more important for coordina-
tion among collocated members. We articulate propositions for future research in this
area based on our analysis.

KEY WORDS AND PHRASES: coordination, global software development, management of
the information technology (IT) function, team knowledge.

LARGE-SCALE SOFTWARE DEVELOPMENT REQUIRES a substantial amount of coordination be-
cause software work is carried out simultaneously by many individuals and teams, and
then integrated into a single product. Software parts need to integrate and interoperate
properly, and production schedules need to be synchronized, creating dependencies
among tasks and people. These coordination challenges are compounded when the
teams doing the work are distributed across multiple geographic locations. Devel-
oping software globally is increasingly becoming more attractive, in part because
communication technologies have made it easy to communicate and exchange digital
products across distances. Furthermore, global software development also affords
wider geographical market coverage, closer proximity to clients, and better access to
special software talent and technical resources [14]. On the other hand, when soft-
ware is produced from multiple locations, it becomes more diffi cult to manage task
dependencies and coordinate, increasing development time [38].

Despite today’s sophisticated collaboration and software engineering tools, coordi-
nation continues to be challenging in software development. Many software projects
are behind schedule and over budget, and do not always work as intended [53]. In
part, these failures are due to problems with coordination [6, 21, 47], especially when
software projects are large [9] and globally distributed [38]. Therefore, it is important
to understand how geographic dispersion affects a team’s ability to coordinate and
deliver software in a timely manner. Most studies of team coordination in software
teams have focused primarily on communication as the main mechanism teams use to
communicate [18, 38, 41, 47, 51]. Moreover, the team cognition literature shows that
real-time synchronous teams also coordinate through team knowledge about the task
and about team members [13, 44, 56], but this perspective has not been adequately
explored in more asynchronous and geographically distributed contexts.

Our goal in this study is to examine how geographically distributed software devel-
opers coordinate their work, with a particular interest in understanding whether and

04 espinosa.indd 13604 espinosa.indd 136 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 137

how team knowledge helps them coordinate. Team cognition research suggests that
as team members interact over time, they develop team knowledge that arguably can
help them coordinate implicitly because they can anticipate what others are likely
to do and can interact more effectively [12, 44, 45]. While individual knowledge is
necessary in a software team, it is not suffi cient. Large-scale software projects require
the integration of knowledge from multiple technical and functional domains [21, 77].
Although there are reasons to think that team knowledge could improve coordination
in software teams, it is not entirely clear how team knowledge may infl uence coor-
dination in geographically distributed software development, nor is it evident how
geographic dispersion may affect the effectiveness of various types of team knowledge
on coordination. Therefore, our research addresses the following questions: How do
various types of team knowledge affect coordination in software development? And,
how do these effects vary with geographic dispersion?

We fi rst identify the different types of coordination problems experienced in large-
scale software development, based on the various types of dependencies developers
face in their work and whether team knowledge helps software teams coordinate their
work. We then explore how the effectiveness of various types of team knowledge is
affected by geographic distance. The present study contributes to the information
systems literature in several ways. First, although some studies have explored the
effect of specifi c team knowledge mechanisms—for example, expertise coordination
[29] or group mind [19]—on software team coordination, there are no studies that
have jointly investigated the effects of various types of team knowledge on large-scale
collaborative software development in a global context. Second, these studies have
neither acknowledged nor distinguished between the different categories of team
knowledge that may be used to coordinate implicitly, nor have they investigated how
collocated and geographically distributed teams use these various types of team cogni-
tion. Finally, there are no prior studies on this topic carried out empirically, examining
global software teams working in real software organizations.

Theoretical Foundations

Coordination in Software Development

COORDINATION THEORY DEFINES COORDINATION as the management of dependencies among
task activities [52]. When the task activities of multiple individuals need to interrelate
in a synchronized fashion, the corresponding interdependencies need to be well man-
aged. Thus, a team can be said to be highly coordinated when its key task dependencies
have been effectively managed (e.g., parts are well integrated into the fi nished product,
task activities are completed on schedule, etc.). Complex tasks with tightly coupled
dependencies such as collaborative software development can benefi t from coordination
[21, 47]. For example, each developer on a team may individually produce software
code effectively (e.g., error free, on time, and of high quality), but this new software
may not work well with software parts produced by other developers.

From a technical perspective, the integration of multiple software parts needs to be
well coordinated through mechanisms such as team communication, specifi cations,

04 espinosa.indd 13704 espinosa.indd 137 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

138 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

and confi guration management. However, this type of technical dependency is not the
only coordination challenge faced by software teams. From a project management
perspective, developers also need to complete their tasks according to an established
schedule. Temporal coordination is particularly important for the performance of global
project teams [55]. Slippages in the schedule in some parts of the code or software
activity can put the whole project behind schedule. For example, if the design of a
particular feature is a few days late and the development of this feature has already been
scheduled, the development team will need to stand by until the design is fi nished or
wait to be reassigned to other activities. Similarly, from a software process perspective,
improper management or lack of compliance with the established software processes
can have negative effects on software project outcomes [22] and can create problems
or delays because of things such as “features churn” [19], priority confl icts, and block-
ing issues. Given these various types of dependencies present in software projects,
we anticipate that the sensitivity to the respective types of coordination problems will
vary depending on the role of the person involved (e.g., technical, manager) and the
types of dependencies that affect their work the most. This is an important aspect of
our study because most prior studies of coordination have relied on scales that do not
distinguish among these various types of dependencies and roles.

Coordination Through Team Knowledge

The classic organizational literature indicates that team members coordinate “mecha-
nistically” via “task programming mechanisms” and “organically” through team
communication [54, 73, 75]. Adopting the right mix of coordination mechanisms
can make software teams more productive [4], which is critical in competitive mar-
kets [40]. Coordination of repetitive and routine aspects of the task can be achieved
mechanistically using tools, schedules, plans, manuals, and specifi cations. A con-
fi guration management system, which enables developers to work simultaneously in
different parts of the code without interfering with each other, is an example of a task
programming mechanism. More uncertain aspects of the task (e.g., missed deadlines
or hardware failures) cannot be effectively coordinated mechanistically, so members
need to coordinate “by feedback” or “organically” through communication [54]. While
these traditional coordination mechanisms are important, other cognitive factors can
also infl uence how teams coordinate. Team members’ common ground, knowledge
of each other and the task domain, familiarity with task programming mechanisms
(e.g., software tools, specifi cations), and awareness of who is around and who has
done what recently are a few examples of these factors.

The literature on team cognition suggests that as team members interact with each
other and gain expertise with the joint task, they develop team knowledge about the
task and the team, which helps them to coordinate implicitly [12, 44]. Such implicit
coordination has been referred to as the “synchronization of member actions based
on unspoken assumptions about what others in the group are likely to do” [84, p. 3].
However, how these cognitive mechanisms may help in asynchronous and geographi-
cally distributed software tasks has not been effectively addressed in the literature.

04 espinosa.indd 13804 espinosa.indd 138 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 139

Several streams of research have defi ned and studied different types of team knowledge
mechanisms, including team mental models [13], shared schemas [65], collective mind
[82], transactive memory [81], and team situation awareness [24]. Although these con-
structs are conceptually different, they are all based on some form of team knowledge.
Cooke et al. [17] elaborated the concept of team knowledge to help us reconcile these
multiple views, suggesting that team knowledge can be classifi ed into two general
categories—long-term knowledge and fl eeting knowledge or “awareness.”

This classifi cation is useful when studying team cognition and coordination because
both types of knowledge can help teams coordinate their work. Long-term knowledge
is acquired over time, is more permanent, and has applicability over several phases
of the task. This is the type of knowledge acquired through training, education, and
experience, and it has relevance at various stages of the task. For example, a developer’s
knowledge of software engineering will be useful to that individual’s software devel-
opment efforts throughout the task. Long-term knowledge can either be individual
(needed to carry out individual tasks) or shared (needed to understand each other’s
tasks and coordinate the work).

In contrast, fl eeting knowledge or “awareness” changes depending on the specifi c
task situation. Awareness is situational and it is only relevant until the situation changes.
For example, a developer’s knowledge of who is responsible for testing a particular
software fi le and whether this testing has been completed is only useful if the developer
is waiting for that particular fi le to be tested. A few weeks later, this knowledge may
no longer be useful. Awareness can also be individual—needed to understand one’s
task environment—and team—needed to know what others are doing to synchronize
their actions. Team awareness enables members to have up-to-the-minute information
about what is happening with the shared task environment and the team, thus helping
them make adjustments to stay synchronized with other team members. In this study,
we examine both long-term shared knowledge and team awareness. Specifi cally, we
explore how coordination in global software development is infl uenced by two types
of shared knowledge—shared knowledge of the task and of the team—and two types
of team awareness—task awareness and presence awareness—which we discuss more
thoroughly below.

Shared Knowledge

Shared knowledge develops over time from prior familiarity with common tools and
processes, the product being developed, the task domain, and team members, and is
long-lasting. This type of knowledge may exist prior to the current task and will further
develop during the task. Knowledge of who knows what in the team and knowledge of
the process used by a team to develop a particular software application are examples
of shared knowledge. Shared knowledge helps members coordinate because it helps
individuals develop more accurate explanations and expectations about task events
and member behaviors [12, 44, 45, 66]. As Alavi and Leidner [2] concluded in their
literature review of knowledge management research, shared knowledge is important
because knowledge is processed in people’s minds and, therefore, individuals need to

04 espinosa.indd 13904 espinosa.indd 139 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

140 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

have a certain level of overlap in their individual knowledge bases to coordinate their
collective action. Furthermore, shared knowledge, particularly when members know
that they share it (i.e., “mutual knowledge”), also helps team members coordinate
because their communication is more effi cient due to shared vocabularies and more
common ground [18, 31, 46].

Team cognition research suggests that team members develop organized shared
knowledge about many things (e.g., goals, strategies, processes, team interaction, etc.),
but that the knowledge that matters the most for task performance relates to either task
work (i.e., activities necessary to carry out the task) or teamwork (i.e., activities neces-
sary to work with each other) [17, 44, 64]. Having shared knowledge about technical
concepts, products, and processes can help software team members develop accurate
expectations about future states of the task and improve common grounding in their
communication, which helps coordination. For example, a study of software teams
found that one of the most salient problems leading to mistakes and the need for ad-
ditional effort was the thin spread of application domain knowledge within the team
[21]. This study and others (e.g., [77]) have concluded that task knowledge sharing and
integration is necessary to ensure positive outcomes in this domain. Consequently, we
anticipate that shared knowledge of the task can be benefi cial for team coordination
in global software development.

Similarly, having knowledge about members of the team could also help coordina-
tion because individuals can develop accurate perceptions of what other teammates
know and how they may respond to particular events and circumstances, thus helping
them plan their own actions. For example, transactive memory research suggests that
knowledge of who knows what in the team helps their coordination because members
know who to contact when they need information, and also because members develop
expectations about who in the team will pay attention, acquire, and process what kinds
of new information when it arrives to the team [8, 50, 80, 81]. The benefi cial effects
of knowing who has which expertise in the team have been observed with consulting
teams made up of MBA students [49] and large-scale software teams [29]. Other studies
with software teams have also demonstrated the importance of integrating individually
held expertise [74] and suggested that understanding how one’s work contributes to
other team members’ tasks helps develop a collective mind [82], which helps team
members become more coordinated [19]. While the constructs investigated in these
studies are conceptually different, these studies collectively share the underlying notion
that having knowledge about team members is benefi cial for coordination. Therefore,
we anticipate that shared knowledge of the team has the potential to facilitate team
coordination in global software development.

Team Awareness

Team awareness is knowledge about what is happening in the team’s task environ-
ment at any given point in time and is fl eeting. This is related to the concept of situa-
tion awareness, which is up-to-the-minute perception and comprehension of what is
happening in the task environment, and an understanding of how this will affect the

04 espinosa.indd 14004 espinosa.indd 140 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 141

task [1, 24], which has been studied extensively in aviation and other real-time tasks.
Knowledge of an upcoming deliverable deadline and knowledge of the progress of
the development of a particular software module are examples of team awareness,
which helps members synchronize their actions with other team members [24, 83].
Team awareness has been defi ned simply as “an understanding of the activities of
others, which provides a context for your own activity” [23, p. 107]. Gutwin and
Greenberg [36] concluded from their several studies on the subject that team aware-
ness is important for coordination in collaborative tasks that contain interdependent
activities, because it helps members shift from individual to shared activities seam-
lessly and easily, and because members have a better understanding of the sequence
and timing of things and the temporal boundaries of their actions. There are several
types of team awareness that have been discussed in the literature, including work
space awareness, activity awareness, environmental awareness, and task awareness
and presence awareness, which are particularly popular among collaboration tool de-
sign researchers [25, 34, 69]. In this study, we focus on two types of team awareness
that are important for coordination—“task awareness” and “presence awareness.” We
selected these two types of awareness for our study because they are most important
in virtual collaboration [69] and because they provide situational knowledge about
task work and teamwork.

Consistent with the defi nitions of team awareness discussed above, we defi ne task
awareness as a member’s up-to-the-minute knowledge of what is going on in the task
in areas that affect that member’s work. This defi nition is similar in concept to Chen
and Gaines’s [15] concept of chronological awareness, which is knowledge of recent
task activities (e.g., knowing who did what recently, who is behind schedule, what tasks
are pending). Chen and Gaines argue that this type of awareness provides essential
information for collaborators engaged in a task that is too large or too complex for
a single member to undertake. This implies that knowing the task activities of other
teammates could help team members to coordinate their work more effectively in
global software development tasks.

Presence awareness—up-to-the-minute knowledge of which team members are
around, where and when, as relevant for the task—is also important when members
collaborate on a task. Presence awareness has been investigated by computer scientists
and software development researchers [7, 33, 37] because of its potential to bring
some sense of collocation to geographically distributed teams [30]. But most efforts in
presence awareness research have focused on tool design. In fact, presence awareness
tools and features are becoming very popular in corporate collaboration applications
[58] because of their potential benefi ts. When members have tight dependencies with
other members, it is important to be able to fi nd the right people when you need them,
or at least to know when and if they are around. This is generally not a problem in
collocated environments where members have abundant presence awareness cues (e.g.,
coat hanging in the closet, car parked in the lot, offi ce light is on), but knowing where
people are can be a challenge in geographically distributed environments where such
presence cues are not generally available. Therefore, presence awareness could be
helpful in facilitating coordination in global software development tasks.

04 espinosa.indd 14104 espinosa.indd 141 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

142 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

Team Knowledge in Geographically Distributed Collaboration

Most of the theory building and empirical research on team cognition has concentrated
on real-time and collocated contexts [56]. However, some of the theories and fi ndings
in this area may not necessarily extend to geographically distributed contexts [11].
Thus, it is imperative that we develop an understanding of the fundamental differ-
ences among these contexts before we can make generalizations beyond real-time and
collocated contexts. Geographic dispersion affects the nature of interaction within
the team and provides fewer opportunities for spontaneous interaction and acquisi-
tion of team knowledge [3]. Because of this, it often takes longer for members to get
an acknowledgment, obtain an answer, or correct miscommunication. Furthermore,
studies have shown that a substantial amount of coordination in software develop-
ment takes place through informal encounters and meetings in public places such as
the water cooler or coffee room [47, 63], which does not happen when members are
separated by distance. Indeed, a recent empirical study examined the “radical colloca-
tion” of software development teams and found signifi cant benefi ts of collocation in
terms of facilitating coordination, learning, and performance [72]. Consequently, we
anticipate that geographic dispersion hinders coordination in software development
[21, 38, 39].

While this may not seem like a novel prediction, it is important to point out that the
effects of geographic distance on coordination have not been conclusively determined,
mainly because geographic distance often correlates with other boundaries that affect
coordination in global teams such as time zones, cultural differences, and technology
mediation [26, 61, 78]. In an article summarizing their several years of research on the
effects of distance in teams, Olson and Olson [59] concluded that many of the observed
effects of distance are due to factors other than distance per se. Similarly, more recent
studies have shown that factors such as cultural differences and time zones affect [28]
coordination more strongly than geographic distance alone. In contrast, recent studies
of global teams suggest that distance per se is still a substantial barrier in collaborative
work [42]. We conclude from our analysis of the literature that the issue of whether
physical separation affects coordination has not been resolved. Nevertheless, we
speculate that until technologies that can bridge distance become more mature and
effective, distance will continue to be a challenge for many organizations.

We argue that geographic dispersion affects how teams coordinate in two funda-
mental ways. First, some mechanisms available to collocated teams are not available
to geographically distributed teams. For example, collocated teams can communicate
frequently and spontaneously, which is not the case for geographically distributed
teams. Second, the effectiveness of those mechanisms that remain available despite
member dispersion is affected by lack of copresence. For example, while geographi-
cally distributed teams can communicate in real time through video conferencing,
some contextual references are lost when communicating through this technology.
Consequently, the mix of coordination mechanisms used by collocated and distrib-
uted teams will differ. Generally speaking, coordination by communication will be
more affected by geographic separation than task programming mechanisms because

04 espinosa.indd 14204 espinosa.indd 142 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 143

distance impairs the team members’ ability to communicate effectively, frequently,
and spontaneously. Therefore, we expect that team cognition is particularly useful in
helping geographically distributed team members coordinate because it helps them
offset these communication barriers.

For example, shared knowledge of the task will afford more common ground among
team members because of shared vocabulary and familiarity with technical terms,
making their limited communication more effective [18]. Similarly, shared knowledge
of the team will make it easier for its members to locate experts when needed, thus
helping coordinate the access to and utilization of that expertise [29]. Task awareness
also makes the team’s limited communication more effi cient because, unlike collocated
team members, geographically distributed members can have long periods in which
they do not know what their cross-site teammates are working on [69]. Finally, presence
awareness, when available, can bring some of the benefi ts of copresence to distributed
environments promoting more frequent spontaneous interaction among team members
[30, 69], which research has shown to help software teams coordinate [47, 63].

Generally speaking, any mechanism that can help teams cope—for example, com-
municate more effi ciently or reduce the need to communicate, anticipate and explain
events and member actions, learn who knows what or where to fi nd expertise, fi gure
out who did what and when on particular task activities, and who is around—has
the potential to offset some of the coordination problems. We expect this to be true
for both collocated and geographically distributed collaboration. At the same time,
because the ability to communicate effectively changes with distance separation [3],
we anticipate that collocated and distributed team members will differ in terms of
which team cognition mechanisms they use and how effective these mechanisms
are in helping them coordinate. In the present fi eld study, we try to fi ll this gap in
the literature by developing further insights into how distributed software develop-
ment teams coordinate their work, how various types of team knowledge—shared
knowledge of the task, shared knowledge of the team, task awareness, and presence
awareness—infl uence coordination in software development, and how these effects
are affected by geographic dispersion.

Research Methodology

Study Context

WE STUDIED COORDINATION IN SOFTWARE TEAMS at a major division of a large telecommu-
nications fi rm that developed software for wireless GSM (Global System for Mobile
Communications) networks in Europe. We selected this fi rm for our study because
of its extensive use of global teams for software development. Software teams for
wireless networks, such as GSM, present an ideal context for this study because the
respective software developers, technical managers, and project managers, as well as
their customers, are distributed around the globe, and because GSM software systems
are large and complex, developed incrementally over time. The interdependent nature
of GSM software development makes it ideally suited for coordination studies.

04 espinosa.indd 14304 espinosa.indd 143 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

144 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

A GSM network is composed of various network elements (e.g., base station con-
troller, speech transcoder frame, base transceiver station, mobile service switching
center, and operations and maintenance center). Each network element is a system
of hardware and software that is periodically updated through product releases. A
product release includes a bundle of new or improved features to the existing wireless
network and generally incorporates releases for all or most of its network elements.
Software development for different network elements is carried out by separate internal
organizations often located in more than one geographic site. A software release for a
given network element is generally assigned to a “release team” that implements the
various features associated with that release.

We selected the release team member as the unit of analysis for this study for a num-
ber of reasons. First, release teams are relatively large (i.e., 50 or more developers),
and large teams provide a good sample of participants and a wide variety of perspec-
tives and stories about the software development process. Teams of this size are not
uncommon in organizations working on complex product development releases or
software versions where the work is subdivided by specifi c modifi cations and feature
implementations assigned to smaller groups within the team. Second, these teams
are project driven and very focused, and have a stable membership during the release
implementation period (i.e., approximately one year), such that team members have
the potential to develop a sense of identity with their team despite their size. Finally,
these teams often involve developers from more than one geographic location, so
comparisons can be made between collocated and cross-site collaborations.

Method

We conducted individual, semistructured face-to-face interviews with team members
working on a GSM software release. Each interview was focused on one particular
software modifi cation or new feature implementation for the release that the participant
recalled as salient, which we then used to elicit more specifi c instances of coordina-
tion successes and failures. We employed this research method because in-depth
interviews help the researcher to acquire a richer understanding of the phenomenon
under study at the early stages of an investigation and can thus inform subsequent
stages of the research study when developing survey scales and variables [71]. We were
particularly interested in understanding the nature of the dependencies in the global
software development domain to learn how team cognition mechanisms help teams
coordinate and how this coordination differs between collocated and geographically
distributed team members.

Sample

The sample for this study included individuals on a large software team, including 36
software developers, technical managers, and project managers1 located in England
(n = 15) and Germany (n = 21). These individuals used mostly voice communica-
tion (telephone, teleconferencing, etc.), technical Web sites, and a confi guration

04 espinosa.indd 14404 espinosa.indd 144 7/23/2007 10:17:24 AM7/23/2007 10:17:24 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 145

management system2 to coordinate their work. Like most organizations developing
large-scale software, this organization used a confi guration management system. This
system helped developers to work simultaneously on the software code without af-
fecting each other, manage software changes and versions, and document important
software modifi cation issues. We conducted interviews until we reached theoretical
saturation—that is, the last few interviews did not provide new insights—making the
sample size appropriate for this study [70]. We selected this development team because
it had completed more than 70 percent of the software code at the time of the study, so
its members could recall recent experiences relevant for the interview. Also, although
developers on this team sometimes collaborated with colleagues from other countries,
most of the software development for this release was carried out from these two loca-
tions. In addition, developers in these two locations had collaborated over the past few
years. Finally, all German software developers on the team were fl uent in English, and
both sites were separated by only one time zone, thus reducing possible confounds
stemming from differences in time zones, language, and other team boundaries [26],
and ensuring that the effects observed were primarily due to geographic distance. We
interviewed all software developers and managers from this release team who were
available in these two locations at the time of the site visits, representing approximately
72 percent of the personnel assigned to this network element release.

Data Collection and Coding

Our data collection and coding methods are largely based on grounded theory [32, 70].
Grounded theory is a widely used qualitative method in information systems research
[10, 60, 76] and global teams [62], particularly when the study is exploratory and the
theoretical development of the topic is in its early stages [60]. Our method differs
slightly from grounded theory in that we fi rst conducted all our interviews and then
analyzed the data. Grounded theory recommends doing data collection and analysis
simultaneously, redirecting the inquiry based on what the emerging data suggest, but
we decided to conduct several interviews up-front for practical considerations because
we had a limited amount of on-site observation time allowed by the group. Our ques-
tions focused on a specifi c problem that the participant identifi ed at the beginning of
the interview, and our target participant group was initially well defi ned, so we did
not need to alter our interview instrument and protocol.

All interviews except two were audiotaped. In one interview, the participant did not
agree to be audiotaped, and in another interview, the tape recorder was not working.
Substantial written notes were taken for these two unrecorded interviews. Interviews
were limited to one hour, as requested by team managers. Most of the questions (see
Appendix A) used were framed to uncover how team members managed their depen-
dencies [52] when coordinating. The interviews were semistructured to allow partici-
pants to discuss or elaborate on important issues they recalled, even if unrelated to the
specifi c question or incident they were originally answering. Participants were fi rst
asked a few background questions and were then asked to think of an important recent
modifi cation request or feature implementation for the network element release under

04 espinosa.indd 14504 espinosa.indd 145 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

146 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

study that was salient in their minds. All subsequent questions were made in reference
to that particular modifi cation request or feature. The intention was to obtain specifi c
information about whom they communicated with, which types of information they
exchanged, which types of coordination challenges or failures they encountered, and
which types of team cognition, if any, were used to coordinate tasks while developing
that particular feature or modifi cation request.

The data from the interviews were transcribed into a text document. The text con-
tained approximately 480 single-spaced pages of written material. As prescribed by
grounded theory, we fi rst did open coding of the text data. Open coding focuses on
uncovering general recurrent themes. We then did axial coding of the data, which
involves fi nding relationships among these themes, which we then used to produce
a template with hierarchical codes. Hierarchical coding schemes are not only useful
because they allow fi ne-grained detail to be captured but fi ndings can then be aggre-
gated to higher levels to make generalizations. In order to keep our inquiry consistent
with our research goals, we established a hierarchical coding scheme starting with
three high-order code categories we defi ned based on our interest. All subsequent
code subcategories underneath these three main categories emerged from axial cod-
ing of the data.

We defi ned the fi rst high-order code category to uncover attributions [68] made by
participants about the effect of different types of team knowledge on coordination.
Attributions were made when a participant indicated that a particular type of team
knowledge was important for coordination, or that its absence was detrimental to
coordination. The second high-order code category we defi ned was to identify recur-
ring themes related to specifi c work contexts—collocated (e.g., staff overload, getting
people’s attention) and cross-site work (e.g., little opportunity for interaction, low
richness of communication media). The third high-order code category we used was
to classify instances of coordination problems mentioned into more general types of
coordination problems—technical, temporal, and process.

We only coded 32 of the 36 cases because four of the cases were from special inter-
views with product managers and cross-network element coordinators who were not
directly involved in the development effort of the release we studied but were very
knowledgeable about coordination issues related to the integration of features across
different network elements because of their intimate involvement with client require-
ments. We used the content of the four interviews to complement our interpretation of
the 32 main interviews—10 managers and 22 technical staff. The coding scheme that
emerged after axial coding is shown in Appendix B. This method is similar in concept
to codebook analysis or thematic coding [43] and content analysis [79], except that
the codebook is not established before the study. Rather, it emerges from investigation
of recurrent themes, and the data are analyzed not only statistically but also through
qualitative interpretation [43]. Coding of textual data enables researchers to classify
text segments into meaningful information that can be retrieved for interpretation
during analysis [57].

Appendix C shows an example of a coded case. After all the interviews were coded
by one of the researchers, we asked an independent coder to code six randomly selected

04 espinosa.indd 14604 espinosa.indd 146 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 147

interviews using the same coding template. We then analyzed and discussed agree-
ments, disagreements, and coding errors on these six interviews with the independent
coder. This helped the external coder become more familiar with the coding scheme.
We then asked the independent coder to recode these six interviews and also code the
remaining interviews. A comparison of the episodes coded by the researcher and the
independent coder on all 32 interviews yielded a fi nal agreement rate of 76.6 percent,
measured as number of agreements over agreements plus disagreements [57], and a
kappa reliability of 72.1 percent [16], indicating substantial agreement between the
coders [48]. The fi nal coding of disagreements was discussed and resolved jointly
with the independent coder after inspecting each disagreement.

The cases were analyzed fi rst by sorting text segments by their respective codes to
uncover patterns of responses for each code in the coding scheme. Consistent with
grounded theory, we further analyzed the data by evaluating similarities and differences
in the cases. The primary comparison we made was between collocated and geographi-
cally distributed contexts, but we also compared similarities and differences among
different types of cognition—shared knowledge of the task, shared knowledge of the
team, task awareness, and presence awareness—and coordination problems—technical,
temporal, and process—discussed. In addition, we also counted the number of cases
in which specifi c attributions were made. Even though we did not rely on counts for
our analysis, we used counts or frequencies to assess trends and the prevalence of
recurrent themes. Counts are useful because they help direct attention to aspects of the
data that warrant further investigation [43], evaluate interrater reliability of the coded
data [68], and reduce problems with analytical bias [57]. However, counts do not tell
anything meaningful about the data without qualitative interpretation of the narrative
recorded from participant responses [43, 57]. Thus, as recommended for qualitative
research [32, 57, 70], we analyzed our data through interpretation of similarities and
differences in the coded text.

Analysis and Results

WE FIRST IDENTIFIED AND ANALYZED THE TYPES of coordination problems that were
salient to our study participants because we were interested in developing a deeper
understanding of our dependent variable. We then examined how geographic disper-
sion infl uenced coordination, based upon the comments of the interviewees. Finally,
we analyzed the role of different types of team cognition in facilitating coordination
in the global software development projects described by team members, and how
the use of team knowledge was affected by geographic dispersion. Throughout, we
develop and present propositions based upon our fi ndings.

Coordination Types

Miles and Huberman [57] suggest organizing and displaying results from textual data
in a matrix form. We employed the “code category by role” matrix shown in Table 1
to present our coding results for the number and percentage of cases in which each

04 espinosa.indd 14704 espinosa.indd 147 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

148 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

Ta
bl

e
1.

 C
oo

rd
in

at
io

n
Pr

ob
le

m
s

D
is

cu
ss

ed

R

ol
e

C
od

e
R

es
po

ns
e

A
ll

M
an

ag
er

s
Te

ch
ni

ca
l

ca
te

go
ry

co

de
d

Pa
rt

ic
ip

an
ts

Pe

rc
en

t
Pa

rt
ic

ip
an

ts

Pe
rc

en
t

Pa
rt

ic
ip

an
ts

Pe

rc
en

t

C
oo

rd
in

at
io

n
Te

ch
ni

ca
l

28

88

6
60

22

10

0
ty

pe
s

Te
m

po
ra

l
24

75

10

10

0
14

64

de
sc

rib
ed

P

ro
ce

ss

18

56

9
90

9

41
N

ot
es

:
N

um
be

rs
 s

ho
w

 h
ow

 m
an

y
pa

rt
ic

ip
an

ts
 d

is
cu

ss
ed

 th
es

e
ty

pe
s

of
 c

oo
rd

in
at

io
n

pr
ob

le
m

s.
 P

er
ce

nt
ag

es
 a

re
 b

as
ed

 o
n

th
e

nu
m

be
r

of
 p

ar
tic

ip
an

ts
.

04 espinosa.indd 14804 espinosa.indd 148 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 149

coordination problem type was discussed by a technical staff or manager. Our analysis
suggests that there are different types of coordination problems in global software
development, and that these problems depend on the type of dependencies involved.
The different coordination problems discussed by participants were categorized into
one of three general types of coordination they identifi ed—technical, temporal, and
process. Technical coordination problems were discussed by 28 (88 percent) of the
participants. These problems surfaced when technical dependencies among software
parts were not effectively managed (e.g., redundant code, incompatible interfaces,
integration problems). Temporal coordination problems were discussed by 24 (75
percent) of the participants. These problems occurred when time dependencies were
not effectively managed, such as when software parts or software activities were not
fi nished according to project schedules, affecting the work of others (such as when
testing cannot start because coding is not complete). Finally, process coordination
problems were brought up by 18 (56 percent) of the participants. These problems
surfaced when dependencies in the software development process were not effectively
managed (e.g., nonadherence to the established software process, priority confl icts,
development work starts before its design is certifi ed, etc.). The following are examples
from the interviews of these three types of coordination problems:

Technical coordination: “Parts for two different network elements worked well
individually, but not together because the specs were misinterpreted, which
delayed the testing by six weeks.” (Testing Engineer)

Temporal coordination: “Being last in the process comes with the territory. . . .
If things aren’t ready on schedule I need to replan all my team’s work. On aver-
age, schedules are one or two days late.” (Testing Engineer)

Process coordination: “There are misunderstandings, which complicate
things . . . in one instance, the Gate 3 [i.e., end design-start coding] review took
place after the coding was completed. You should not start coding until the Gate
3 review is completed. . . . We are still waiting to hear which features are in and
which ones are out.” (Technical Manager)

Based upon these fi ndings, we propose:

Proposition 1: The coordination problems experienced by software development
teams fall into one of three categories that correspond to the types of dependen-
cies they need to manage—technical, temporal, and process.

It is important to note that we are not positing that these different coordination
types are collectively exhaustive or orthogonal. In fact, we suspect that these types
of coordination may be interrelated in some way and that there may be other types of
coordination that did not surface in our interview. For example, team members may
have a pooled dependency [73] on scarce shared resources such as specialists and
dedicated hardware. Similarly, technical coordination problems or priority confl icts
(i.e., process coordination problems) may lead to rework and delays, which may cre-
ate temporal coordination problems. Nevertheless, these three types of coordination

04 espinosa.indd 14904 espinosa.indd 149 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

150 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

problems were salient to our participants and distinguishing among them is important
because it helps identify the different types of dependencies present in a collaborative
task and how these dependencies affect different groups.

Interestingly, as shown in Table 1, participants in different roles had different per-
spectives about coordination problems, depending on the type of dependency that
affected them the most (χ2 = 21.6, degrees of freedom [df] = 2, p < 0.001). All of the
technical staff (100 percent) discussed at least one type of technical problem, but only
six (60 percent) of the managers discussed technical coordination issues. In contrast,
all managers (100 percent) discussed at least one type of temporal coordination prob-
lem and nine of them (90 percent) mentioned process coordination problems, while
only 14 (64 percent) and nine (41 percent) of the technical staff mentioned temporal
and process coordination problems, respectively. These results suggest that software
professionals in different roles are more sensitive to the particular types of coordina-
tion that more directly affect their work.

Technical groups design, develop, and test software parts that need to interoperate
properly when integrated, so it is not surprising that they were more concerned with
managing technical dependencies. Although many technical staff discussed temporal
and process coordination problems, these problems were not as salient to them as
technical coordination problems. In contrast, managers were more concerned about
managing project schedules and the software development process. Consequently,
managers were more sensitive to the need to manage temporal and software process
dependencies (i.e., temporal and process coordination). While many managers dis-
cussed technical coordination problems, such problems were not as salient to them.
This leads us to propose that:

Proposition 2: The types of coordination problems faced by software development
collaborators vary by role, depending on the nature of the dependencies that affect
their individual work—that is, team members in technical roles experience more
technical coordination problems, whereas team members in management roles
experience more temporal and process coordination problems.

Effects of Geographic Dispersion

Table 2 presents our coding results for the number and percentage of cases in which
each coordination issue was discussed by collocated team members. We did not
fi nd substantial differences in the relative importance of these coordination problem
types between collocated and geographically distributed contexts. In other words,
in both contexts, technical coordination problems were more salient than temporal
coordination problems, which were, in turn, more salient than process coordination
problems. However, our analysis of the interviews suggests that coordination is
generally less problematic with collocated developers than with those collaborating
across geographical locations. Because we took special care in our research design to
mitigate confounding effects with other team boundaries such as language and time
zones, this represents an important fi nding and validates prior fi ndings that geographic

04 espinosa.indd 15004 espinosa.indd 150 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 151

Ta
bl

e
2.

 R
es

ul
ts

 o
n

Sa
lie

nt
 I

ss
ue

s
by

 C
on

te
xt

A

ll

C

ol
la

bo
ra

tio
n

N

um
be

r
of

C
od

e
ca

te
go

ry

co
nt

ex
t

R
es

po
ns

e
co

de
d

pa
rt

ic
ip

an
ts

Pe

rc
en

t

C
on

te
xt

-s
pe

ci
fi c

C

ol
lo

ca
te

d
N

ot
 a

 lo
t o

f c
oo

rd
in

at
io

n
pr

ob
le

m
s

co
llo

ca
te

d
17

53

is
su

es

P

rio
rit

y
co

nfl
 ic

ts
 a

re
 a

 p
ro

bl
em

8

25

O

ve
rlo

ad
 is

 a
 p

ro
bl

em

15

47

G

et
tin

g
pe

op
le

’s
 ti

m
e/

at
te

nt
io

n
is

 a
 p

ro
bl

em

11

34

A
cr

os
s

si
te

s
Li

ttl
e

op
po

rt
un

ity
 fo

r
in

fo
rm

al
 in

te
ra

ct
io

n
5

16

Le

an
 c

om
m

un
ic

at
io

n
m

ed
ia

 (
lo

w
 r

ic
hn

es
s)

11

34

O
th

er
: t

im
e

zo
ne

s,
 la

ng
ua

ge
, c

ul
tu

re
, a

nd
 s

o
on

13

41

D
el

ay
s

m
or

e
su

bs
ta

nt
ia

l a
cr

os
s

si
te

s
7

22

P

rio
r

kn
ow

le
dg

e
of

 c
ol

le
ag

ue
s/

co
nt

ex
t h

el
ps

22

69

N
ee

d
re

du
nd

an
t o

r
lia

is
on

 r
ol

es
 (

th
ey

 h
el

p)

12

38
N

ot
es

:
N

um
be

rs
 s

ho
w

 h
ow

 m
an

y
pa

rt
ic

ip
an

ts
 d

is
cu

ss
ed

 th
es

e
is

su
es

 in
 th

e
re

sp
ec

tiv
e

co
nt

ex
t.

Pe
rc

en
ta

ge
s

ar
e

ba
se

d
on

 th
e

nu
m

be
r

of
 p

ar
tic

ip
an

ts
.

04 espinosa.indd 15104 espinosa.indd 151 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

152 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

dispersion is a substantial barrier to getting the work done [20, 42]. A majority of
the participants (17, or 53 percent) explicitly mentioned that they did not have many
problems coordinating their work with collocated colleagues because they knew who
they were and where to fi nd them, and because they often encountered each other in
public areas such as hallways and lunchrooms, which enabled them to have frequent,
rich, and spontaneous interactions. In contrast, the majority of participants (29, or 91
percent) mentioned at least one problem relating to geographically distributed work,
and many of them (22, or 69 percent) mentioned at least one type of problem that was
specifi c to geographically distributed work (e.g., fewer opportunities for interaction,
no presence awareness).

Our fi ndings shown in Table 2 also suggest that geographic distance infl uences the
effectiveness of organic coordination through communication because of different
reasons, including lack of familiarity with cross-site colleagues and working environ-
ments (22, or 69 percent), lean communication media (11, or 34 percent), and fewer
opportunities for interaction (5 or 16 percent). The following comment by a developer
illustrates how distance affects coordination:

“Sometimes I don’t know how remote people fi t into specifi c groups. I only
know two or three people [at the other site], and the rest of the organization [at
the other site] is a black box. Locally, it is easier to change the team confi gu-
ration when things are not working well, but this is not possible with remote
collaborations.” (Developer)

This suggests the following proposition:

Proposition 3: Geographic distance hinders team coordination through com-
munication in global software development.

Effect of Team Knowledge on Coordination Success

Table 3 summarizes the coding results with the number and percentage of cases in
which each attribution about team knowledge was made in the context of collocated or
geographically distributed collaboration. About 91 percent of all participants mentioned
at least one type of team knowledge being important for coordination. Although it may
seem intuitively obvious to suggest that shared knowledge helps teams coordinate,
this effect has been explored primarily in synchronous and collocated collaboration
contexts and less so in asynchronous and distributed contexts. Furthermore, we know
little about how these effects differ across collaboration contexts. Consequently, we
start with simple general propositions about the effects of shared knowledge and team
awareness on team coordination, and in the next subsection we discuss how these
effects differ across contexts.

With respect to shared knowledge, many participants expressed comments suggest-
ing that both shared knowledge of the task (24, or 75 percent) and shared knowledge
of the team (25, or 78 percent) were important when coordinating their work. This is
illustrated by the following comments:

04 espinosa.indd 15204 espinosa.indd 152 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 153

Ta
bl

e
3.

 R
es

ul
ts

 o
n

th
e

Im
po

rt
an

ce
 o

f
Te

am
 K

no
w

le
dg

e
fo

r
C

oo
rd

in
at

io
n

E
ff

ec
tiv

en
es

s

C
ol

la
bo

ra
tio

n
co

nt
ex

t

A
ll

C
ol

lo
ca

te
d

A
cr

os
s

si
te

s

N
um

be
r

of

N

um
be

r
of

N
um

be
r

of
C

od
e

ca
te

go
ry

R

es
po

ns
e

co
de

d
pa

rt
ic

ip
an

ts

Pe
rc

en
t

pa
rt

ic
ip

an
ts

Pe

rc
en

t
pa

rt
ic

ip
an

ts

Pe
rc

en
t

Im
po

rt
an

ce
 o

f t
yp

e

S
ha

re
d

kn
ow

le
dg

e
of

 th
e

ta
sk

24

75

20

63

10

31

of
 te

am
 k

no
w

le
dg

e
S

ha
re

d
kn

ow
le

dg
e

of
 th

e
te

am

25

78

4
13

25

78

fo
r

co
or

di
na

tio
n

Ta
sk

 a
w

ar
en

es
s

9
28

6

19

6
19

P

re
se

nc
e

aw
ar

en
es

s
12

38

1

3
12

38

N
ot

es
:

N
um

be
rs

 s
ho

w
 h

ow
 m

an
y

pa
rt

ic
ip

an
ts

 d
is

cu
ss

ed
 th

es
e

at
tr

ib
ut

io
ns

. P
er

ce
nt

ag
es

 a
re

 b
as

ed
 o

n
th

e
nu

m
be

r
of

 p
ar

tic
ip

an
ts

.

04 espinosa.indd 15304 espinosa.indd 153 7/23/2007 10:17:25 AM7/23/2007 10:17:25 AM

154 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

Shared knowledge in general—“understanding the technology that others refer
to is a major problem, especially with systems architects. . . . The difference
in common language is sometimes technical and sometimes conceptual. . . .
Currently I have to spend a lot of time explaining things because many new
colleagues have no knowledge of our product. . . . Sometimes I don’t know how
to interact with them.” (Developer)

Shared knowledge of the task—“we simply increase the number of status meet-
ings [to address coordination issues] so that everyone is aware of everyone’s
needs. I think we now understand our problems better. Therefore, we are able
to build contingencies and more realistic schedules.” (Testing Engineer)

Shared knowledge of the team—“new teams need time to coagulate [i.e., gel] [to
coordinate effectively], get to know each other, know who knows what, know
who to trust, know how to work together, etc. . . . need less people churn and
more time to get to know each other.” (Testing Engineer)

Thus, we posit that:

Proposition 4: (a) Shared knowledge of the task and (b) shared knowledge of the
team help team coordination in software development.

Half of the people we interviewed (16, or 50 percent) discussed the importance of
at least one type of team awareness for coordination and most of these comments
were made in relation to distributed collaboration (14, or 44 percent). Some partici-
pants suggested the importance of task awareness (9, or 28 percent), whereas others
discussed the importance of presence awareness (12, or 38 percent). Problems with
task awareness included things such as not knowing whether a particular software part
was ready for testing or whether a particular design was ready to start coding. While
task awareness is important in any collaborative effort, it is particularly important
in geographically distributed contexts because it is more diffi cult to fi gure out who
has done what with respect to the task, as the following comment made by a testing
engineer illustrates:

“[We need to exchange] information about MRs [i.e., modifi cation requests]
raised as a result of problems found so that they [i.e., developers] can start fi x-
ing. Also, [we need to exchange information] about which tests we plan to do
and which ones we have [already] done.”

Problems with presence awareness have to do with not knowing when people are
around. The following comment made by a developer illustrates the importance of
presence awareness for coordination:

“It is hard to know people’s availability. Sometimes you learn very late that a
developer is no longer around and you are wondering why you did not get an
e-mail reply. Sometimes it takes a while to get replies and it is because people
are not available.”

Thus, we posit that:

04 espinosa.indd 15404 espinosa.indd 154 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 155

Proposition 5: (a) Task awareness and (b) presence awareness help team coor-
dination in software development.

Differences in Team Knowledge Effects on Coordination:
Collocated Versus Distributed Work

While team knowledge appears to be universally benefi cial for coordination, interest-
ingly, there are differences in the importance of the specifi c types of team knowledge
on coordination between collocated and geographically distributed work. As Table
3 shows, we found signifi cant differences between collocated and geographically
distributed team members in terms of the importance of different types of team
knowledge for coordination (χ2 = 23.7, df = 3, p < 0.001). Except for task awareness,
participants discussed different types of team knowledge being important for collocated
and distributed work. Participants mentioned the importance of shared knowledge of
the task for coordination more often in the collocated context (20, or 63 percent) than
in the geographically distributed context (10, or 31 percent), while they discussed
shared knowledge of the team (25, or 78 percent) and presence awareness (12, or 38
percent) more often in the geographically distributed context than in the collocated
context (4, or 13 percent, and 1, or 3 percent, respectively). This result suggests that
software developers were more concerned about having shared knowledge of key
products, concepts, and processes with their collocated collaborators, but they were
more concerned about knowing the skills, expertise, and abilities of their colleagues
at other sites and being able to fi nd them when needed. The majority of participants
(22, or 69 percent) indicated that having prior knowledge of colleagues or of the work
environment on the other site offsets many of the problems of working with remote
colleagues, as the following comment illustrates:

“I don’t have a lot of problems [across sites] because I know the team in Germany
well. . . . I spent nine months training there. . . . I know who to talk to when I
have a problem.” (Testing Engineer)

While shared knowledge of the task may be important for geographically distributed
work, it is not entirely surprising that participants did not discuss it much during our
interviews given that many of them had diffi culties knowing their colleagues at other
sites. We speculate that if team members do not know who is who, the lack of shared
task knowledge will not be very salient to them. If team members do not know their
colleagues at other sites, it is not possible for them to know whether they have any
task knowledge in common. Conversely, collocated team members who know each
other well are more sensitive to problems stemming from the lack of common under-
standing and the lack of shared beliefs about concepts, products, and processes (i.e.,
shared mental model of the task). The importance of knowing colleagues at other sites
is illustrated by the following comment:

“We need to have early face-to-face meetings to get to know people we work
with at other sites to fi gure out who to rely on and who to approach for a given
problem.” (Technical Manager)

04 espinosa.indd 15504 espinosa.indd 155 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

156 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

This leads us to propose that:

Proposition 6: The most effective mix of team knowledge mechanisms for coor-
dination will vary depending on whether the work is carried out with collocated
or geographically distributed members.

Proposition 7: (a) Shared knowledge of the task is more important for collocated
members and (b) shared knowledge of the team is more important for geographi-
cally distributed team members.

Proposition 8: Shared knowledge of the team helps offset some of the negative
effects of geographic dispersion on coordination.

We did not fi nd any difference in the importance of task awareness for coordination
between collocated and geographically distributed work at this organization. One pos-
sible explanation for this fi nding is that software developers of large systems such as
the one we studied use sophisticated software collaboration tools such as confi gura-
tion management systems that provide most of the task awareness that is needed to
do their jobs. Empirical studies have found that these systems help teams coordinate
the technical aspects of software tasks [27, 35]. These systems track who has changed
which parts of the code, thus providing a substantial amount of task awareness to team
members. These systems also protect parts of the code automatically, so that develop-
ers can make simultaneous changes in the same software code without affecting each
other, thus making task awareness less necessary. Thus, we do not have empirical
evidence about the importance of task awareness, but we speculate that task awareness
is critical to performance in both collocated and distributed collaboration, and that task
awareness can be effectively provided with sophisticated collaboration tools such as
confi guration management systems and up-to-date technical and project Web sites.

In contrast, we found substantial differences in the importance of presence awareness
for coordination between collocated and geographically distributed work. Presence
awareness problems across sites included things such as not knowing when colleagues
were at their desks, when they were on holiday or vacation schedules, or their general
whereabouts. Problems with lack of presence awareness in geographically distributed
collaboration have been identifi ed in prior internal studies at this organization, which
led to the development of a number of collaboration tools, including a shared team
calendar; a team presence awareness tool with team chat features; and a team portal tool
with information about national holidays, time zones, and other important information
about different sites in which a team operates [5]. These tools were being deployed
and evaluated at the time of this study. This leads us to propose that:

Proposition 9: Presence awareness is more important for coordination with geo-
graphically distributed team members than with collocated members.

Proposition 10: Presence awareness can offset some of the negative effects of
geographic dispersion on coordination.

Table 4 provides an overall summary of our results and propositions.

04 espinosa.indd 15604 espinosa.indd 156 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 157

Ta
bl

e
4.

 R
es

ul
ts

 a
nd

 P
ro

po
si

tio
ns

 S
um

m
ar

y

Is
su

e
G

en
er

al
 e

ff
ec

ts

D
is

pe
rs

io
n

ef
fe

ct
s

C
oo

rd
in

at
io

n
P

1:
 T

he
 c

oo
rd

in
at

io
n

pr
ob

le
m

s
ex

pe
rie

nc
ed

 b
y

so
ftw

ar
e

P

3:
 G

eo
gr

ap
hi

c
di

st
an

ce
 h

in
de

rs
 te

am
 c

oo
rd

in
at

io
n

de

ve
lo

pm
en

t t
ea

m
s

fa
ll

in
to

 o
ne

 o
f t

hr
ee

 c
at

eg
or

ie
s

th
at

th

ro
ug

h
co

m
m

un
ic

at
io

n
in

 g
lo

ba
l s

of
tw

ar
e

co

rr
es

po
nd

 to
 th

e
ty

pe
s

of
 d

ep
en

de
nc

ie
s

th
ey

 n
ee

d
to

de

ve
lo

pm
en

t.

m
an

ag
e—

te
ch

ni
ca

l,
te

m
po

ra
l,

an
d

pr
oc

es
s.

P

2:
 T

he
 ty

pe
s

of
 c

oo
rd

in
at

io
n

pr
ob

le
m

s
fa

ce
d

by
 s

of
tw

ar
e

P

6:
 T

he
 m

os
t e

ffe
ct

iv
e

m
ix

 o
f t

ea
m

 k
no

w
le

dg
e

de

ve
lo

pm
en

t c
ol

la
bo

ra
to

rs
 v

ar
y

by
 r

ol
e,

 d
ep

en
di

ng
 o

n
th

e

m
ec

ha
ni

sm
s

fo
r

co
or

di
na

tio
n

w
ill

 v
ar

y
de

pe
nd

in
g

on

na
tu

re
 o

f t
he

 d
ep

en
de

nc
ie

s
th

at
 a

ffe
ct

 th
ei

r
in

di
vi

du
al

w

he
th

er
 th

e
w

or
k

is
 c

ar
rie

d
ou

t w
ith

 c
ol

lo
ca

te
d

or

w
or

k—
th

at
 is

, t
ea

m
 m

em
be

rs
 in

 te
ch

ni
ca

l r
ol

es
 e

xp
er

ie
nc

e

ge
og

ra
ph

ic
al

ly
 d

is
tr

ib
ut

ed
 m

em
be

rs
.

m

or
e

te
ch

ni
ca

l c
oo

rd
in

at
io

n
pr

ob
le

m
s,

 w
he

re
as

 te
am

 m
em

be
rs

in
 m

an
ag

em
en

t r
ol

es
 e

xp
er

ie
nc

e
m

or
e

te
m

po
ra

l a
nd

 p
ro

ce
ss

co
or

di
na

tio
n

pr
ob

le
m

s.

S
ha

re
d

kn
ow

le
dg

e

P
4a

: S
ha

re
d

kn
ow

le
dg

e
of

 th
e

ta
sk

 h
el

ps
 te

am
 c

oo
rd

in
at

io
n

P
7a

: S
ha

re
d

kn
ow

le
dg

e
of

 th
e

ta
sk

 is
 m

or
e

of
 th

e
ta

sk

in
 s

of
tw

ar
e

de
ve

lo
pm

en
t.

im
po

rt
an

t f
or

 c
ol

lo
ca

te
d

m
em

be
rs

 th
an

 fo
r

ge
og

ra
ph

ic
al

ly
 d

is
tr

ib
ut

ed
 te

am
 m

em
be

rs
.

S
ha

re
d

kn
ow

le
dg

e

P
4b

: S
ha

re
d

kn
ow

le
dg

e
of

 th
e

te
am

 h
el

ps
 te

am
 c

oo
rd

in
at

io
n

P
7b

: S
ha

re
d

kn
ow

le
dg

e
of

 th
e

te
am

 is
 m

or
e

of
 th

e
te

am

in
 s

of
tw

ar
e

de
ve

lo
pm

en
t.

im
po

rt
an

t f
or

 g
eo

gr
ap

hi
ca

lly
 d

is
tr

ib
ut

ed
 te

am

m
em

be
rs

 th
an

 fo
r

co
llo

ca
te

d
te

am
 m

em
be

rs
.

P
ro

po
si

tio
n

8:
 S

ha
re

d
kn

ow
le

dg
e

of
 th

e
te

am
 h

el
ps

of

fs
et

 s
om

e
of

 th
e

ne
ga

tiv
e

ef
fe

ct
s

of
 g

eo
gr

ap
hi

c

di

sp
er

si
on

 o
n

co
or

di
na

tio
n.

Ta
sk

 a
w

ar
en

es
s

P
5a

: T
as

k
aw

ar
en

es
s

he
lp

s
te

am
 c

oo
rd

in
at

io
n

in
 s

of
tw

ar
e

P

9:
 P

re
se

nc
e

aw
ar

en
es

s
is

 m
or

e
im

po
rt

an
t f

or

de
ve

lo
pm

en
t.

co
or

di
na

tio
n

w
ith

 g
eo

gr
ap

hi
ca

lly
 d

is
tr

ib
ut

ed
 te

am

m
em

be
rs

 th
an

 w
ith

 c
ol

lo
ca

te
d

m
em

be
rs

.

P
10

: P
re

se
nc

e
aw

ar
en

es
s

ca
n

of
fs

et
 s

om
e

of
 th

e

ne

ga
tiv

e
ef

fe
ct

s
of

 g
eo

gr
ap

hi
c

di
sp

er
si

on
 o

n

co

or
di

na
tio

n.

P
re

se
nc

e
aw

ar
en

es
s

P
5b

: P
re

se
nc

e
aw

ar
en

es
s

he
lp

s
te

am
 c

oo
rd

in
at

io
n

in

so

ftw
ar

e
de

ve
lo

pm
en

t.

04 espinosa.indd 15704 espinosa.indd 157 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

158 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

Conclusions and Limitations

THIS RESEARCH HAS SOME POTENTIAL LIMITATIONS. One is that the study was conducted
at a single organization with one large, relatively stable software development team.
Some of our fi ndings may not readily generalize to other kinds of organizations or to
software teams that have a high turnover during the execution of a project, although we
speculate that problems stemming from lack of team knowledge will be exacerbated
when turnover is high. In addition, although we selected two sites that had only one
hour of time zone difference and fl uency in English, cultural differences exist between
developers in Germany and the United Kingdom, so it is possible that some of the
observed effects were due to cultural differences. However, our on-site experience
suggests that the German developers were very skilled in their use of the English
language and that most developers at both sites were knowledgeable of each other’s
cultures and traveled frequently to each other’s sites. Nevertheless, our study provided
much needed insights into coordination issues relevant to the global software develop-
ment context, and our propositions can be validated in studies of other organizations.
Also, while the high reliability of coding with an independent coder is reassuring,
the interpretation of results is always subject to construction by the researcher. This
problem was mitigated by the fact that four researchers discussed these interpreta-
tions and reached the same conclusions. Finally, our study is limited to a few types of
team knowledge, but other ones such as “collective mind,” “mutual knowledge,” and
“environmental awareness” may also have an effect on coordination. Despite these
possible limitations, we believe that this research makes signifi cant contributions to
both the research literature and the practitioner community, as we discuss below.

Consistent with prior research on global software teams [38], our study found that it is
more diffi cult to coordinate tasks across sites than within a single site. While this result
may seem unsurprising, the empirical evidence in the extant literature is inconclusive
because of the many confounding variables that correlate with geographic distance.
Furthermore, as collaboration technologies aimed at bridging distance continue to
improve, the effects of geographic dispersion need continual reevaluation. Our results
suggest that geographic distance continues to be a problem for coordination. At the
same time, our study revealed that team members require a different mix of team
knowledge mechanisms to coordinate their work, depending on whether collaborators
are collocated or separated by distance. Furthermore, we found that some of the nega-
tive effects of geographic dispersion can be offset with knowledge-based mechanisms
such as shared knowledge about team members and presence awareness. We found
that all the forms of team knowledge we studied were believed to be important for
coordination, and some more than others. Shared knowledge was more important for
coordination among our participants than team awareness.

Interestingly, shared knowledge of the team was more important for members
working across sites, whereas shared knowledge of the task was more important
with members at a single site. It is important to note that we are not discounting the
importance of shared task knowledge in collaborations across sites or the importance
of shared knowledge of the team in collaborations within a site. On the contrary, we

04 espinosa.indd 15804 espinosa.indd 158 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 159

found all types of shared knowledge important in all contexts. However, the relative
importance of each type of shared knowledge shifted depending on whether members
were referring to collocated or distributed work. We believe this is due to two reasons.
First, participants were more likely to discuss problems that were more salient to them.
Therefore, in collocated contexts where team members were more likely to know each
other well, shared knowledge of the team is less likely to be a problem, so members
were more inclined to discuss problems with shared task knowledge. Similarly, in
distributed contexts, limited knowledge of teammates at other sites appeared to be
more salient and, therefore, members were less inclined to discuss problems with
shared task knowledge. Second, as mentioned earlier, this organization used a con-
fi guration management system in which developers can record important task issues
as they encounter them. As other studies have shown, developers use confi guration
management systems not only to manage parallel software changes but also to record
task information [35], thus reducing the need for distributed team members to rely
on shared task knowledge.

While only one participant in collocated work mentioned presence awareness as
important in helping coordination, all participants raised this issue in the context of
geographically distributed work. This fi nding supports the efforts of tool developers,
who are increasingly incorporating more presence awareness features into their prod-
ucts. We were somewhat surprised that task awareness appeared to have little effect on
coordination, but we attribute this fi nding to the sophisticated software tools employed
in the organization we studied, which provides effective task status information to
developers. The fact that a confi guration management system helped the team coor-
dinate [27, 35] supports the argument that task awareness facilitates coordination. In
sum, our fi ndings imply that large-scale global software development organizations
can benefi t substantially from promoting the use of practices and tools that strengthen
various types of team knowledge.

Finally, our study suggests that different people report different types of coordina-
tion problems, depending on the types of dependencies they need to manage to do
their jobs. Technical groups are more concerned with technical dependencies, whereas
managers are more concerned with process and temporal dependencies. This has im-
portant implications for practitioners and researchers. Practitioners need to be aware
that different tasks have different types of dependencies, thus requiring different types
of coordination. Therefore, the dependencies affecting different groups in large-scale
complex tasks such as global software development need to be carefully studied
and understood before prescribing coordination remedies. Similarly, researchers of
team cognition and coordination need to be aware of the fact that different types of
coordination mechanisms or team knowledge have different effects on coordination,
and that the presence of one particular mechanism (e.g., a confi guration management
system) may make some forms of team cognition (e.g., task awareness) less neces-
sary and vice versa. Therefore, it is important to control for the presence of multiple
coordination mechanisms and forms of team cognition when studying coordination,
particularly in global and highly interdependent contexts.

04 espinosa.indd 15904 espinosa.indd 159 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

160 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

This study is an important contribution for information systems research because
understanding how team knowledge affects coordination in teams can help us identify
effective system solutions to knowledge management, which can foster larger knowl-
edge structures, greater knowledge sharing, more effective member interconnection,
easier access to knowledge sources in the team, and more coordinated collective action
[2, 67]. The present study also represents an important contribution to the empirical
body of literature on team knowledge, coordination, and geographically distributed
collaboration because most of the prior research on team knowledge has been theoreti-
cal, and most of the empirical work has taken place in laboratory experiments using
real-time (i.e., synchronous) simulated tasks. Our study is the fi rst one to jointly explore
the effect of different types of team knowledge on coordination in an asynchronous
context in a global software organization.

This study also contributes to practice. Even though there are many collaboration
tools that support distributed and asynchronous collaboration, we know very little about
the effectiveness of these tools. Tool developers have sensed the potential that awareness
features such as presence awareness can have in geographically distributed collabora-
tion, and are fl ooding the market with related tools. Our fi ndings in this study helped
us identify and better understand key features for the next generation of collaboration
tools based on team cognition. Some of these features (e.g., to facilitate team mental
model formation) have not been implemented in tools. For example, this study suggests
that confi guration management systems are effective collaboration tools in the global
software development domain, providing distributed software teams with shared task
knowledge and task awareness to help them manage simultaneous software changes
to different parts of the software product. To help organizations become and remain
competitive in such aggressively competitive global markets such as telecommunica-
tions, our fi ndings imply that better collaboration tools need to be implemented with a
wider set of features to facilitate the use of different types of team cognition that can
help distributed teams effectively handle a wider range of dependencies.

Acknowledgments: The authors thank Audris Mockus and F. Javier Lerch for their valuable
advice and guidance at various stages of this research project. They also thank Yuqing Ren for
doing the external coding of the data. Finally, the authors thank the JMIS editor and reviewers
for their excellent feedback and suggestions during the review process. An earlier research-in-
progress version of this paper was presented at the International Conference on Information
Systems (ICIS), 2001, New Orleans.

NOTES

1. Ten managers (six technical managers and four project managers), 22 technical staff
(four architects and designers, 13 developers, three testing engineers, and two other software
professionals), and four product managers.

2. A confi guration management system is a sophisticated software tool that helps organize
the work fl ow; keep track of who is working or has worked on particular software fi les; make
simultaneous changes by different developers to various parts of the software code; manage and
control software versions; and annotate comments and observations about the code [35].

04 espinosa.indd 16004 espinosa.indd 160 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 161

REFERENCES

1. Adams, M.; Tenney, Y.; and Pew, R. Situation awareness and the cognitive management
of complex systems. Human Factors, 37, 1 (1995), 85–104.

2. Alavi, M., and Leidner, D.E. Knowledge management and knowledge management sys-
tems: Conceptual foundations and research issues. MIS Quarterly, 25, 1 (2001), 107–136.

3. Allen, T. Managing the Flow of Technology. Cambridge, MA: MIT Press, 1977.
4. Andres, H.P., and Zmud, R.W. A contingency approach to software project coordination.

Journal of Management Information Systems, 18, 3 (Winter 2001–2), 41–70.
5. Anthes, G.H. Software development goes global. Computerworld Online (June 26, 2000)

(available at http://www.computerworld.com/softwaretopics/software/story/0,10801,46187,00
.html).

6. Bohem, B.R. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall,
1981.

7. Boyer, D.G.; Handel, M.J.; and Herbsleb, J.D. Virtual community presence awareness.
ACM SIGGROUIP Bulletin, 19, 3 (1998), 11–14.

8. Brandon, D.P., and Hollingshead, A. Transactive memory systems in organizations:
Matching tasks, expertise, and people. Organization Science, 15, 6 (2004), 633–644.

9. Brooks, F. The Mythical Man-Month: Essays on Software Engineering, anniversary ed.
Reading, MA: Addison-Wesley, 1995.

10. Bryant, A. Re-grounding grounded theory. Journal of Information Technology Theory
and Application, 4, 1 (2002), 25–42.

11. Bullen, C., and Bennett, J. Groupware in practice: An interpretation of work experiences.
In R. Baecker (ed.), Groupware and Computer-Supported Cooperative Work: Assisting Hu-
man–Human Collaboration. San Francisco, CA: Morgan Kaufman, 1993, pp. 69–84.

12. Cannon-Bowers, J.A.; Salas, E.; and Converse, S. Shared mental models in expert team
decision-making. In J. Castellan (ed.), Individual and Group Decision-Making: Current Issues.
Hillsdale, NJ: Lawrence Erlbaum, 1993, pp. 221–246.

13. Cannon-Bowers, J.A., and Salas, E. Refl ections on shared cognition. Journal of Organi-
zational Behavior, 22, 2 (2001), 195–202.

14. Carmel, E. Global Software Teams. Upper Saddle River, NJ: Prentice Hall, 1999.
15. Chen, L., and Gaines, B. A cyber-organism model for awareness in collaborative com-

munities on the Internet. International Journal of Intelligent Systems, 12, 1 (1997), 31–56.
16. Cohen, J. A coeffi cient of agreement for nominal scales. Educational and Psychological

Measurement, 20, 1 (1960), 37–46.
17. Cooke, N.J.; Salas, E.; Cannon-Bowers, J.A.; and Stout, R.J. Measuring team knowledge.

Human Factors, 42, 1 (2000), 151–173.
18. Cramton, C.D. The mutual knowledge problem and its consequences for dispersed col-

laboration. Organization Science, 12, 3 (2001), 346–371.
19. Crowston, K., and Kammerer, E.E. Coordination and collective mind in software require-

ments development. IBM Systems Journal, 37, 2 (1998), 227–245.
20. Cummings, J. Work groups, structural diversity, and knowledge sharing in a global orga-

nization. Management Science, 50, 3 (2004), 352–364.
21. Curtis, B.; Krasner, H.; and Iscoe, N., A fi eld study of the software design process for

large systems. Communications of the ACM, 31, 11 (1988), 1268–1286.
22. Deephouse, C.; Mukhopadhyay, T.; Goldenson, D.R.; and Keller, M.I. Software pro-

cesses and project performance. Journal of Management Information Systems, 12, 3 (Winter
1996–97), 187–205.

23. Dourish, P., and Bellotti, V. Awareness and coordination in shared workspaces. In M.
Mantel and R. Baecker (eds.), ACM Conference on Computer Supported Collaborative Work.
New York: ACM Press, 1992, pp. 107–114.

24. Endsley, M. Toward a theory of situation awareness in dynamic systems. Human Factors,
37, 1 (1995), 32–64.

25. Espinosa, J.A.; Cadiz, J.; Rico-Gutierrez, L.; Kraut, R.E.; Scherlis, W.; and Lautenbacher,
G. Coming to the wrong decision quickly: Why awareness tools must be matched with ap-
propriate tasks. In T. Turner, G. Szwillus, M. Czerwinski, F. Peterno, and S. Pemberton (eds.),

04 espinosa.indd 16104 espinosa.indd 161 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

162 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2000,
pp. 392–399.

26. Espinosa, J.A.; Cummings, J.N.; Wilson, J.M.; and Pearce, B.M. Team boundary issues
across multiple global fi rms. Journal of Management Information Systems, 19, 4 (Spring 2003),
157–190.

27. Espinosa, J.A.; Slaughter, S.A.; Herbsleb, J.D.; and Kraut, R.E. Coordination mechanisms
in globally distributed software development. In D. Moitra (ed.), First International Conference
on Management of Globally Distributed Work. Bangalore, India: GDW Consortium, 2005, pp.
9–20.

28. Espinosa, J.A.; Lee, G.; and DeLone, W. Global boundaries, task processes and IS project
success: A fi eld study. Information, Technology and People, 19, 4 (2006), 345–370.

29. Faraj, S., and Sproull, L. Coordinating expertise in software development teams. Manage-
ment Science, 46, 12 (2000), 1554–1568.

30. Fish, R.S.; Kraut, R.E.; Root, R.W.; and Rice, R.E. Video as a technology for informal
communication. Communications of the ACM, 36, 1 (1993), 48–61.

31. Fussell, S., and Krauss, R. Coordination of knowledge in communication: Effects of
speakers’ assumptions about what others know. Journal of Personality and Social Psychology,
62, 3 (1992), 378–391.

32. Glaser, B.G., and Strauss, A. The Discovery of Grounded Theory: Strategies for Qualita-
tive Research. Hawthorne, NY: Aldine de Gruyter, 1967.

33. Godefroid, P.; Herbsleb, J.D.; Jagadeesan, L.J.; and Li, D. Ensuring privacy in presence
awareness systems: An automated verifi cation approach. In W. Kellog and S. Whittaker (eds.),
2000 ACM Conference on Computer Supported Collaborative Work. New York: ACM Press,
2000, pp. 59–68.

34. Greenberg, S.; Gutwin, C.; and Cockburn, A. Using distortion-oriented displays to sup-
port workspace awareness. Technical Report, Department of Computer Science, University of
Calgary, Canada, 1996.

35. Grinter, R.E. Workfl ow systems: Occasions for success and failure. Computer Supported
Cooperative Work, 9, 2 (2000), 189–214.

36. Gutwin, C., and Greenberg, S. The importance of awareness for team cognition in
distributed collaboration. In E. Salas and S.M. Fiore (eds.), Team Cognition: Understanding
the Factors that Drive Process and Performance. Washington, DC: American Psychological
Association, 2004, pp. 177–201.

37. Handel, M., and Herbsleb, J.D. What is chat doing in the workplace? In E. Churchill, J.
McCarthy, C. Neuwirth, and T. Rodden (eds.), 2000 ACM Conference on Computer Supported
Cooperative Work. New York: ACM Press, 2002, pp. 1–10.

38. Herbsleb, J.D., and Grinter, R.E. Architectures, coordination, and distance: Conway’s
law and beyond. IEEE Software, 16, 5 (1999), 63–70.

39. Herbsleb, J.D.; Mockus, A.; Finholt, T.; and Grinter, R.E. Distance, dependencies and
delay in a global collaboration. In W. Kellog and S. Whittaker (eds.), 2000 ACM Conference on
Computer Supported Collaborative Work. New York: ACM Press, 2000, pp. 319–328.

40. Herbsleb, J.D., and Mockus, A. An empirical study of speed and communication in
globally distributed software development. IEEE Transactions on Software Engineering, 29,
6 (2003), 481–494.

41. Kiesler, S.; Wholey, D.; and Carley, K. Coordination as linkage: The case of software
development teams. In D.H. Harris (ed.), Organizational Linkages: Understanding the Produc-
tivity Paradox. Washington, DC: National Academy Press, 1994, pp. 214–239.

42. Kiesler, S., and Cummings, J.N. What do we know about proximity in work groups? A
legacy of research on physical distance. In P. Hinds and S. Kiesler (eds.), Distributed Work.
Cambridge, MA: MIT Press, 2002, pp. 57–80.

43. King, N. Template analysis. In G. Symon and C. Cassell (eds.), Qualitative Methods and
Analysis in Organizational Research. Thousand Oaks, CA: Sage, 1998, pp. 118–134.

44. Klimoski, R.J., and Mohammed, S. Team mental model: Construct or metaphor. Journal
of Management, 20, 2 (1994), 403–437.

45. Kraiger, K., and Wenzel, L. Conceptual development and empirical evaluation of mea-
sures of shared mental models as indicators of team effectiveness. In M. Brannick, E. Salas,

04 espinosa.indd 16204 espinosa.indd 162 7/23/2007 10:17:26 AM7/23/2007 10:17:26 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 163

and C. Prince (eds.), Team Performance Assessment and Measurement. Mahwah, NJ: Lawrence
Erlbaum, 1997, pp. 63–84.

46. Krauss, R., and Fussell, S. Mutual knowledge and communicative effectiveness. In J.
Galegher, R.E. Kraut, and C. Egido (eds.), Intellectual Teamwork: Social and Technological
Foundations of Cooperative Work. Hillsdale, NJ: Lawrence Erlbaum, 1990, pp. 111–146.

47. Kraut, R.E., and Streeter, L.A. Coordination in software development. Communications
of the ACM, 38, 3 (1995), 69–81.

48. Landis, R.J., and Koch, G.G. The measurement of observer agreement for categorical
data. Biometrics, 33, 1 (1977), 159–174.

49. Lewis, K. Measuring transactive memory systems in the fi eld: Scale development and
validation. Journal of Applied Psychology, 88, 4 (2003), 587–604.

50. Liang, D.; Moreland, R.; and Argote, L. Group versus individual training and group
performance: The mediating role of transactive memory. Personality and Social Psychology
Bulletin, 21, 4 (1995), 384–393.

51. Malone, T. Modeling coordination in organizations and markets. Management Science,
33, 10 (1987), 1317–1332.

52. Malone, T., and Crowston, K. The interdisciplinary study of coordination. ACM Comput-
ing Surveys, 26, 1 (1994), 87–119.

53. Mann, C.C. Why software is so bad. Technology Review, 105, 5 (2002), 33–38.
54. March, J., and Simon, H.A. Organizations. New York: John Wiley and Sons, 1958.
55. Massey, A.P.; Montoya-Weiss, M.M.; and Hung, Y.-T. Because time matters: Temporal

coordination in global virtual project teams. Journal of Management Information Systems, 19,
4 (Spring 2003), 129–156.

56. Mathieu, J.; Goodwin, G.F.; Heffner, T.S.; Salas, E.; and Cannon-Bowers, J.A. The infl u-
ence of shared mental models on team process and performance. Journal of Applied Psychology,
85, 2 (2000), 273–283.

57. Miles, M.B., and Huberman, A.M. Qualitative Data Analysis: An Expanded Sourcebook.
Beverly Hills, CA: Sage, 1994.

58. Moore, C. IM tools expand presence. InfoWorld (September 27, 2002) (available at www
.infoworld.com/articles/pl/xml/02/09/30/020930plentim.html).

59. Olson, G.M., and Olson, J.S. Distance matters. Human–Computer Interaction, 15, 1
(2000), 139–179.

60. Orlikowski, W. Case tools as organizational change: Investigating incremental and radical
changes in systems development. MIS Quarterly, 19, 3 (1993), 309–340.

61. Orlikowski, W. Knowing in practice: Enacting a collective capability in distributed orga-
nizing. Organization Science, 13, 3 (2002), 249–273.

62. Pauleen, D.J. An inductively derived model of leader-initiated relationship building with
virtual team members. Journal of Management Information Systems, 20, 3 (Winter 2004–5),
227–256.

63. Perry, D.E.; Staudenmayer, N.A.; and Votta, L.G. People, organizations, and process
improvement. IEEE Software, 11, 4 (1994), 36–45.

64. Rentsch, J.R., and Hall, R.J. Members of great teams think alike: A model of the effec-
tiveness and schema similarity among team members. In M.M. Beyerlein and D.A. Johnson
(eds.), Advances in Interdisciplinary Studies of Work Teams: Theories of Self-Managing Work
Teams, vol. 1. Greenwich, CT: JAI Press, 1994, pp. 223–261.

65. Rentsch, J.R., and Klimoski, R.J. Why do great minds think alike? Antecedents of team
member schema agreement. Journal of Organizational Behavior, 22, 2 (2001), 107–120.

66. Rouse, W.B., and Morris, N.M. On looking into the black box: Prospects and limits in
the search for mental models. Psychological Bulletin, 100, 3 (1986), 349–363.

67. Schultze, U., and Leidner, D.E. Studying knowledge management in information systems
research: Discourses and theoretical assumptions. MIS Quarterly, 26, 3 (2002), 213–242.

68. Silvester, J. Attributional coding. In G. Symon and C. Cassell (eds.), Qualitative Methods
and Analysis in Organizational Research. Thousand Oaks, CA: Sage, 1998, pp. 73–93.

69. Steinfi eld, C.; Jang, C.-Y.; and Pfaff, B. Supporting virtual team collaboration: The team-
scope system. In S.C. Hayne (ed.), Group ’99: International ACM SIGGROUP Conference on
Supporting Group Work. New York: ACM Press, 1999, pp. 81–90.

04 espinosa.indd 16304 espinosa.indd 163 7/23/2007 10:17:27 AM7/23/2007 10:17:27 AM

164 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

70. Strauss, A., and Corbin, J. Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory, 2d ed. Thousand Oaks, CA: Sage, 1998.

71. Tashakkori, A., and Teddlie, C. Mixed Methodology: Combining Qualitative and Quan-
titative Approaches. Thousand Oaks, CA: Sage, 1998.

72. Teasley, S.D.; Covi, L.A.; Krishnan, M.S.; and Olson, J.S. Rapid software develop-
ment through team collocation. IEEE Transactions on Software Engineering, 28, 7 (2002),
671–683.

73. Thompson, J. Organizations in Action. New York: McGraw-Hill, 1967.
74. Tiwana, A., and McLean, E.R. Expertise integration and creativity in information systems

development. Journal of Management Information Systems, 22, 1 (Summer 2005), 13–44.
75. Van De Ven, A.H.; Delbecq, L.A.; and Koenig, R.J. Determinants of coordination modes

within organizations. American Sociological Review, 41, 2 (April 1976), 322–338.
76. Vreede, G.-J., de; Jones, N.; and Mgaya, R.J. Exploring the application and acceptance

of group support systems in Africa. Journal of Management Information Systems, 15, 3 (Winter
1998–99), 197–234.

77. Walz, D.B.; Elam, J.J.; and Curtis, B. Inside a software design team: Knowledge acquisi-
tion, sharing, and integration. Communications of the ACM, 36, 10 (1993), 63–77.

78. Watson-Manheim, M.B.; Chudoba, K.; and Crowston, K. Discontinuities and continuities:
A new way to understand virtual work. Information, Technology and People, 15, 3 (2002),
191–209.

79. Weber, R.P. Basic Content Analysis. Newbury Park, CA: Sage, 1990.
80. Wegner, D. Transactive memory: A contemporary analysis of the group mind. In B.

Mullen and G. Goethals (eds.), Theories of Group Behavior. New York: Springer-Verlag, 1986,
pp. 185–205.

81. Wegner, D. A computer network model of human transactive memory. Social Cognition,
13, 3 (1995), 319–339.

82. Weick, K., and Roberts, K. Collective mind in organizations: Heedful interrelating on
fl ight decks. Administrative Science Quarterly, 38, 3 (1993), 357–381.

83. Wellens, R. Group situation awareness and distributed decision-making: From military
to civilian applications. In J. Castellan (ed.), Individual and Group Decision-Making: Current
Issues. Hillsdale, NJ: Lawrence Erlbaum, 1993, pp. 267–291.

84. Wittenbaum, G.M., and Stasser, G. Management of information in small groups. In J.L.
Nye and A.M. Brower (eds.), What’s Social About Social Cognition? Thousand Oaks, CA:
Sage, 1996, pp. 3–27.

04 espinosa.indd 16404 espinosa.indd 164 7/23/2007 10:17:27 AM7/23/2007 10:17:27 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 165

Appendix A. Face-to-Face Interview Questionnaire

Background

 1. What are your main areas of expertise?
 2. How many years of experience do you have in these areas?
 3. Which modifi cation requests/features have you worked on recently?
 4. What proportion of this work was done across sites (relative to collocated)?
 5. What were your roles and responsibilities on these modifi cation requests/

features?
 6. How much prior working experience did you have with your local peers on

this work?
 7. How much prior working experience did you have with other-site peers on this

work?

Group/Task Process Variables

 8. Who in your modifi cation request/feature team did you need to communicate
with to do your work (a) locally and (b) at other sites?

 9. What types of information/knowledge do you need to exchange with them
(a) locally and (b) at other sites?

 10. What problems do you encounter when trying to communicate, coordinate, or
exchange information with them (a) locally and (b) at other sites?

 11. How are these problems addressed, or how could they be addressed effectively
(a) locally and (b) at other sites?

04 espinosa.indd 16504 espinosa.indd 165 7/23/2007 10:17:27 AM7/23/2007 10:17:27 AM

166 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

Appendix B. Coding Template for Face-to-Face Interviews

Effects of implicit coordination mechanisms on coordination (attributional)

IC Implicit mechanisms help coordination or lack of mechanisms hurt
 coordination.
 IC.CO Collocated work.
 IC.X Cross-site work.

 IC.CO.SM Shared knowledge of the task/shared mental model of the task are
 IC.X.SM important.
 Lack of common grounding (or terminology) in technical language.
 Diffi culties conveying technical concepts.
 Common knowledge of key concepts, products, processes, etc.
 Need to internalize concepts (e.g., global teamwork, etc.).
 Need to share knowledge, information, etc., on products, parts,
 processes, etc.

 IC.CO.TM Shared knowledge of the team/shared mental model of the team are
 IC.X.TM important.
 Know (don’t know) who knows what.
 Know (don’t know) people’s skills, expertise, etc.
 Know (don’t know) who is who.
 Know (don’t know) who to call.
 Know (don’t know) who has the information when needed.

 IC.CO.TA Task awareness is important.
 IC.X.TA Know (don’t know) progress on task.
 Know (don’t know) if behind schedule.
 Things discussed on informal discussions, events, etc., not
 recorded anywhere.
 Don’t know of relevant discussions others had.

 IC.CO.PA Presence awareness is important.
 IC.X.PA Cannot fi nd people when I need them.
 Know/don’t know when people are around.
 Out of sight/out of mind problem.

Contrast other collocated and cross-site coordination issues

OT Other coordination issues.
 OT.CO In collocated work.
 OT.CO.NO Not a major problem coordinating collocated work.
 OT.CO.PRI Priority confl icts are a problem (e.g., diffi cult to fi gure out urgency
 of project).
 OT.CO.OVR Work overload is a problem, people are too busy, time pressures.
 OT.CO.ATT Getting people’s time or attention is a problem, availability of
 people.

 OT.X In cross-site work.
 OT.X.INT Little opportunity for interaction, can’t just walk to someone’s offi ce
 and talk.
 OT.X.RCH Low richness of communication media.
 OT.X.OTH Other problems: time zones, language, cultural differences, etc.
 OT.X.DLY Delays are more substantial when working across sites.
 OT.X.KNW Prior knowledge of cross-site colleagues, context, etc., helps.

04 espinosa.indd 16604 espinosa.indd 166 7/23/2007 10:17:27 AM7/23/2007 10:17:27 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 167

 Frequent visits to the other site helps (at least at the beginning).
 OT.X.RED Need redundant roles, redundant or liaison roles help (e.g., liaison
 engineers).
 Having a counterpart, colleague, etc., to call in other site helps.

Identifying types of coordination: (1) problems experienced; (2) type of
information exchanged

CRD Instances and types of coordination problems.

 CRD.TCH Technical coordination problems (i.e., “what” is being done, technical
 dependencies not well managed).
 Need to exchange information/knowledge on technical details,
 specs, etc.
 Problems integrating software/hardware parts, modules, products,
 etc.
 Software repairs, errors, bugs, etc.
 Inadequate implementation of interfaces among parts, etc.
 Inconsistent designs, changing standards (e.g., ETSI).
 Reliability problems with software produced.
 Incomplete releases of software product.

 CRD.TMP Temporal coordination problems (i.e., “when” it is done, temporal
 dependencies not well managed).
 Need to exchange information/knowledge on schedules, etc.
 Need to synchronize plans, activities, work, etc.
 Plans are too aggressive for tightly coupled activities.
 Missed delivery dates.
 Unsynchronized (gate) review dates.
 Late work from prior software phases (e.g., design, coding,
 testing).

 CRD.PRC Software process coordination problems (i.e., “how” it is done,
 software process dependencies not well managed).
 Need to exchange information/knowledge about processes, how
 things are/need to be done.
 Duplication or redundant work.
 Software phase started before it was supposed to.
 Not following the established software process.
 Not following what was agreed upon at meetings, discussions, etc.
 Confusion with new software tools (e.g., ClearCase).
 Working in “crisis” mode (i.e., stop working on one thing to
 address problems).
 Priority confusions and priority confl icts.
 Unresolved blocking issues, need to escalate issues to higher
 levels.
 Project scope changes, frequent changes in feature list for a
 software release (i.e., “feature churn”).
 Frequent changes in specifi cations, standards, etc. (e.g., ETSI).

04 espinosa.indd 16704 espinosa.indd 167 7/23/2007 10:17:27 AM7/23/2007 10:17:27 AM

168 ESPINOSA, SLAUGHTER, KRAUT, AND HERBSLEB

Appendix C. Coding Example

Case: T1-TST-GE (Technical Staff 1, Testing Engineer, Germany)

Input Variables (Team, Task, and Environment)

 1. Functional areas of responsibility: testing.
 2. Project areas of responsibility: testing, functional testing (Rel 3), feature testing

(Rel 4). Then deliver to network testing and integration (NTI) group.
 3. Areas of expertise: testing, software development background, telecom, GSM,

systems architecture. Software development for 2 megabit interface.
 4. Years of experience in these areas: 10 years.
 5. Supervise MRs (i.e., modifi cation requests)? Not really. We issue MRs and

decide which MRs can be included in the next load based on risks found during
testing.

 6. Supervise feature development? No.

Group/Task Process Variables

 7. Who in your team or workgroup do you need to communicate with to do your
work (below, above, and laterally to you)?

 a. Locally: My own team (that I supervise), project management, development
team leader, sometimes with developers too, NTI people (my customers),
systems architecture team, release manager too.

 b. In other sites: Release test manager, testing team leader in England (my
counterpart), quality control people in England, network testing team in
India.

 8. What types of information/knowledge do you need to exchange with them?

 a. Locally: Information on loads, when are releases planned. Mostly about
specifi cations (feature requirement defi nition, software decomposition),
technical details, very specifi c to understand what’s behind each feature.
Process time lines, such as when the next load is planned, and the content
of the load. Testing is at the tail end of the process, so if anyone gets be-
hind, I get behind. It happens all the time. Need to know what and when.
Similarly, my work feeds into NTI via project management. Need to raise
my hand to let them know if I am behind.

 b. At other sites: Information about MRs raised as a result of problems found
so that they can start fi xing them. Also, about what tests we plan to do and
which ones we have done. Interaction is more intense during planning stage
to decide what will be done where, and also when I need to use resources
from other sites, talking directly to the people I need to work with (haven’t
used Indian resources yet for my own responsibility in testing).

 9. What problems do you encounter when trying to communicate, coordinate, or
exchange information with them?

04 espinosa.indd 16804 espinosa.indd 168 7/23/2007 10:17:27 AM7/23/2007 10:17:27 AM

GEOGRAPHICALLY DISTRIBUTED SOFTWARE DEVELOPMENT 169

 a. Locally: Being last in the process comes with the territory. Need to keep
track of what is happening up front so that I am prepared for when issues
come up. Getting information about when testing needs to be done is clear,
no problem there. There are more problems in the realization of schedules.
If things aren’t ready on schedule, I need to replan all my team’s work. Often
schedules are on average one or two days late. This issue has to do with
the organization. This happens because software development deadlines
are planned too tight, so the software build, which is done by many people,
always fi nds last-minute problems that delay the loading, and therefore
the testing. In terms of getting the what (what is in the feature), the prob-
lem is mostly on lateness. When this happens, we cannot be prepared for
the testing. Locally, if the content is not clear, we can ask around. With
some people, the background is so different that it takes a while to begin
to understand each other, which sometimes causes miscommunication. It
is not so much a problem for me but it is a problem for people with less
experience. Not a problem with availability of people.

 b. At other sites: Availability of people is more of a problem here. Sometimes
the voice mail message is not updated to refl ect they are on vacation, so
don’t know when they will get back to me. When this happens, I call people
who sit next to these people to inquire (surrounding neighbors). It works,
but this can be improved. It is less of a problem with auto-replies in e-mail.
Normally, information about MRs raised and what tests have been done
or will be done are not a problem. This information is normally published
via Web. Some Webs are better updated than others. We don’t have a tool
for test management system or for automatic scheduling of test events (or
shared databases, project management) to help us on this.

 10. How are these problems addressed, or how could they be addressed
effectively?

 a. Locally: We simply increase the number of status meetings so that everyone
is aware of everyone’s needs. I think we now understand our problems
better. Therefore, we are able to build contingencies and more realistic
schedules. If we could assign more resources to deal with process planning
and tracking (or by project management), then we could communicate and
defi ne loads more effectively. The delays are usually because we have to
do more than we thought. We need more resources from project manage-
ment to keep things coordinated. Project management should not only
be looking for coordination problems but also helping fi nd solutions. We
don’t need them to tell us that we are late, but we need people that can
take workload from us, especially project management activities. We use
MS Project software to manage this. Need more action and intervention
when project gets off schedule.

 b. At other sites: When problems are found, we make phone calls or we travel.
More consistency across Web sites would help.

04 espinosa.indd 16904 espinosa.indd 169 7/23/2007 10:17:27 AM7/23/2007 10:17:27 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

