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ABSTRACT 
To quickly and accurately measure psychological well-being has 
been a challenging task. Traditionally, this is done with self-report 
surveys, which can be time-consuming and burdensome. In this 
work, we demonstrate the use of short voice recordings on smart-
phones to automatically predict well-being. In a 5-day study, 35 
participants used their smartphones to make short voice recordings 
of what they were doing throughout the day. Using these recordings, 
our model can predict the participants’ well-being scores with a 
mean absolute error of 14%, relative to the self-reported well-being 
(“ground truth”). Both audio and text features from the recordings, 
especially, MFCC and semantic features, are important for predic-
tion accuracy. Based on the work, we provide suggestions for future 
research to further improve the prediction result. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in collab-
orative and social computing; • Computing methodologies 
→ Neural networks; Kernel methods. 
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1 INTRODUCTION 
Psychological well-being is a key component of one’s overall health. 
To accurately and quickly measure well-being is fundamental to 
understanding and coping with its fuctuations as a response to 
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changes in life circumstances (e.g., having children, changing jobs, 
etc.). Traditionally well-being is assessed using self-report surveys 
[7]. However, surveys impose a burden on users, especially in lon-
gitudinal settings where repetitive measures are used. In addition, 
self-reported surveys can be prone to subjective biases, rendering 
the measurements less reliable [28, 36]. 

As an alternative to surveys, researchers have examined how 
data on ambient surroundings (such as weather), mobile phone 
and wearable sensor [40], and text (e.g., blog posts [22] and tweets 
[23]) can be used to predict well-being. Other studies have also 
explored the possibility of using audio-based data to measure well-
being. While these studies have shown success in quantifying well-
being without relying on self-report surveys, the setup of these 
studies are not easily adaptable to everyday situations. For example, 
some studies require professional audio equipment [4, 14, 19] and 
others need both audio and video data [9, 11, 20]. Many studies 
use interview-based data [2, 38], which are difcult to collect in 
everyday settings and to scale up for large numbers of participants. 
While a few studies (e.g., [17]) captured ambient noises as an input 
to calculate social isolation and sleep patterns, which are predicative 
of well-being, this requires the microphone to be on throughout the 
day, which can pose computation, energy, and privacy constraints. 

In this paper, we explore using smartphones as recording devices 
to collect short voice recordings for well-being prediction in peo-
ple’s daily settings. In contrast to existing work where professional 
devices are needed, the current approach uses built-in microphones 
in smartphones, ubiquitous to the majority of U.S. population [1]. 
In addition, these recordings are short and in-the-moment snip-
pets of participants’ environment, and hence are more natural than 
interview settings in labs. More importantly, in contrast to always-
on audio capture that runs in the background, participants have 
control over when to make the recordings and the length of the 
recordings. By using both the audio and text features from the audio 
recordings, we demonstrate that these short recordings, taken from 
every-day environments, can provide value in predicting people’s 
well-being. 

2 DATA COLLECTION 
The data in the current paper was collected as part of a larger 5-day 
study, conducted during the Fall of 2019 to examine the impact of 
social interaction on well-being. The study was approved by our 
university’s Institutional Review Board. Below, we will describe in 
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detail the procedures of the study, variables of our interest, and our 
analyses methods. 

2.1 Procedure 
We recruited 35 participants (66% female) using a local participant 
recruiting website. Participants ranged in age from 18 to 45, with 
63% younger than 30. Because our delivery of the Ecological Mo-
mentary Assessment (EMA) surveys only worked on Android OS, 
all recruited participants were Android phone users. Twenty-two of 
the 35 participants were students, and the remaining 13 participants 
held either part-time or full-time jobs, e.g., social workers, lawyers, 
and nurses. All participants completed the full data collection. 

Participants visited our lab prior to the study to grant informed 
consent. With the participants’ permission, we installed a custom 
app that collected mobile phone data and delivered surveys to their 
phones. After completing the installation of the app, participants 
carried and used their phones as usual for the next 5 days and 
responded to the surveys when prompted. While participants did 
not start on the same date, all frst initial sessions were scheduled 
between Wednesday to Friday so that the study spanned across the 
weekend for all participants. On the 6th day, participants returned 
to the lab for an end-of-study session where they received com-
pensation based on their survey completion, i.e., $10 for days in 
which they completed 70% of the EMA surveys and the end-of-day 
well-being survey. 

2.2 Ecological Momentary Assessments 
Surveys 

During the study, participants received EMA surveys on their 
phones roughly every 30 minutes between 9:30 AM to 10:30 PM. 
No survey was delivered before or after so that participants would 
not be disturbed during their rest. 

The EMA surveys were mostly about respondents’ social inter-
actions. In this paper we focus on the audio recording that was 
part of the EMA survey. When participants frst opened the survey 
notifcations, they were asked to record an brief audio response 
describing what they were doing at the moment (Fig. 1). To ensure 
data privacy, they were asked to use initials instead of personal 
identifers when referring to specifc individuals in the audio fles. 
Then, the remainder of the text-based survey proceeded to ask 
about participants’ most recent social interaction in the past 10 
minutes. Social interactions were defned at the beginning of EMA 
as "a give-and-take exchange involving two or more people". If the 
participant had a social interaction, the survey then asked how close 
the participant felt with the partner involved in the interaction, 
which medium the interaction was carried out, and their current 
mood. 

2.3 End-of-Day Surveys 
At the end of each day, participants received a separate survey at 8 
PM that assessed their well-being. Participants were asked to com-
plete the survey before they went to bed. The questions relevant to 
the current paper include 1) a one-item loneliness scale from the 
Brief Inventory of Thriving [35]; 2) Patient Health Questionnaire-2 
for depression [15]; and 3) a four-item version of the Perceived 
Stress Scale [7]. All these questions are well-established measures. 

Survey

Please Record a Response

In 1–2 sentences, please describe what 
you are doing at the moment. If applicable, 
please also include the INITIALS of people 
you are interaction with.

When you are ready, hold the microphone 
close to your mouth and click on the record 
button to start recording.

Note: Please skip the recording if you are in a 
public space and there are ongoing 
conversations around you.

00:05 / 00:14

Figure 1: Audio recording screen for the EMA Survey. 
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Figure 2: An overview of the machine learning pipeline. 

While there are other well-being surveys in the literature, these 
three were available in the current data collection. Because these 
measures were highly correlated (mean absolute r=0.57), we com-
bined them to calculate an end-of-day well-being score by frst 
reversing the measures (so higher scores mean better well-being), 
and then standardizing and averaging the measures (Cronbach’s 
alpha of the composite scale was 0.80) [6]. The mean of the fnal well-
being score is 0.08 (SD=0.74, Max=1.06, Min=-2.65, Range=3.71). 
Higher well-being indicates a better mental health state. 

3 MACHINE LEARNING 
A total of 1247 recordings were collected. The average number 
of recordings per participant per day is 7.5 (SD=5.2). The average 
recording length is 4.5 sec. These recordings are used to predict 
participants’ end-of-day well-being scores. A visual representation 
of the entire machine learning pipeline is shown in Fig. 2. 

3.1 Data Preprocessing 
Audio fles were frst automatically transcribed before textual fea-
tures were extracted. Any audio fles that were empty or not under-
standable were removed. We tested 3 APIs, i.e., Wit.ai [39], Google 
Cloud Speech-to-Text [10], and Mozilla DeepSpeech [12], for their 
transcription accuracy on 7 randomly selected recordings. Google 
Cloud Speech-to-Text, which had a sample correctness of 100% 
(Wit.ai: 57%, Mozilla DeepSpeech: 29%), was selected to transcribe 
the rest of the audio fles. In the resulting transcripts, words that 
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were all digits, all punctuation, or stopwords [18] were removed 
before sentences were tokenized. The resulting text was used to 
extract the textual features. 

3.2 Feature Extraction 
As the prediction outcome, i.e., well-being, was measured once a 
day, all input features were aggregated by day as well. 

3.2.1 EMA Survey Features (Baseline1). To benchmark the per-
formance against using audio recordings, we designed 2 baseline 
measures with other questions from the surveys. The frst baseline 
was people’s reported social interactions from EMA surveys, moti-
vated by literature that has shown consistent associations between 
social interactions and well-being [3, 30, 34]. Most of the features 
were summed on a per person per day basis, except for perceived 
closeness with the interaction partner, which was averaged. 

3.2.2 End-of-Day Survey Features (Baseline2). We used self-reported 
afect valence and arousal in the end-of-day surveys as a second 
baseline. This is supported by [37], which found that Afect Valence, 
i.e., the positive or negative level of emotion, and Afect Arousal, i.e., 
the intensity of the emotions, are strong indicators for depression. 

3.2.3 Audio Features. All audio features were extracted using pyAu-
dioAnalysis [8], a python audio analysis library, with a frame size of 
50msecs and a frame step of 25msecs. The means and the variances 
were then calculated for each window and were further aggregated 
per person per day. 

Three general types of audio features were extracted, i.e., energy, 
spectral, and length. In [4], energy related features are useful in 
predicting afect as a higher energy audio infers upbeat mood and 
a lower energy audio implies calmness. In addition, Zero Cross-
ing Rate (the rate at which the amplitude passes through 0) and 
Entropy of Energy capture the consistency of the energy. Spectral 
features are the signal spectrum from a Short Time Fourier Trans-
formation, signaling the timbre of the audio signals. For example, 
Spectral Centroid is correlated with the brightness of the signal; 
Spectral Rollof detects the skewness of the signal; Spectral Flux 
indicates the spectral change in two successive frames [19]. Mel 
Frequency Cepstral Coefcients (MFCCs), representing phonemes 
(distinct units of sound) in the speech signal, are a useful feature 
verifed by previous audio processing work [14, 19]. Apart from 
the features mentioned, the length of the audio in seconds and the 
speed (number of words divided by the length of the audio) are also 
extracted. Literature suggests that the speed, or the tempo, of an 
audio is correlated to the mood of the audio [4, 19] and the audio 
length is an unnormalized form of speed. 

3.2.4 Textual Features. While audio features capture the audio 
(and vocal) properties of the recordings, textual features contain 
information about the content of the recordings. We extracted 
3 types of text features, i.e., counts, text vectors, and semantic 
orientation. Text length, i.e., number of words, is a naive way to 
measure the length of the audio transcript. [21] shows that the 
count of Part-of-Speech (POS) tags (using TreeTagger) is useful in 
mood classifcation. 

Table 1: Final Features used in machine learning mod-
els. MFCC is Mel Frequency Cepstral Coefcients. TF-IDF 
is frequency-inverse document frequency. POS is Part-of-
Speech. AFINN is an enhanced version of Afective Norms 
for English Words. LIWC is Linguistic Inquiry and Word 
Count. 

Feature Type Feature 

Survey 
Baseline1: EMA {afect_arousal, afect_valence}_{mean, var}, 

isInteraction, inPerson, closeness 
Baseline2: Afect 
(End-of-day) 

afect_arousal, afect_valence 

Audio 
length, speed, energy_entropy_{mean, var}, 
spectral_entropy_{mean, var}, 
mfcc_{1, 2, 3, 4}_{mean, var}, 
mfcc_{5, 6, 7, 8, 9, 10, 11, 12, 13}_mean 

Text Text Vector TF-IDF 

Others 
POS_{RP, CC, JJ, NP, VB, NNS, TO}, afnn, 
opinion_positive, LIWC_{Achieve, Afect, Comm, 
Cogmech, I, Motion, Past, Physical, Posemo, 
School, See, Self, TV} 

In addition to simple counts, a text vector is one of the most 
common ways of representing textual data. We tried 3 text vec-
tor options. A Bag-of-word (BOW) model is commonly used in 
text analysis systems [21, 33]. BOW simply counts the word occur-
rences. Another text vector utilized is the word lemma frequency 
[21] acquired using TreeTagger [31]. Word lemmas group together 
words of the same stem (e.g., test, tests, and testing) and can poten-
tially provide a better semantic representation than BOW. Finally, a 
more sophisticated text vector giving greater weights to important 
words often used in information retrieval is term frequency-inverse 
document frequency (TF-IDF) [14]. 

Word semantic orientation is another prevailing method often 
used to predict mood [14]. We used multiple popular measurements 
to represent this. The frst is the 28 emotional word count [29]. The 
second is the number of positive words and the number of negative 
words, established in Opinion Lexicon [13]. We also used AFINN 
[26], an enhanced version of Afective Norms for English Words 
(ANEW) [5, 14], to sum up the word valence in a sentence. Lastly, 
we used Linguistic Inquiry and Word Count (LIWC) [27], which 
categorizes text to 80 linguistic, psychological and topical categories. 
This software has shown promising sentiment analysis results in 
previous works [32]. 

After extracting these textual features, they were aggregated by 
summing up on a per person per day basis. 

3.3 Feature Selection 
As we have a large feature space of 3020 dimensions, we needed to 
prune features that were not important to the prediction. We frst 
did a correlation analysis to understand feature distribution, as well 
as the correlation between the feature and the target values. From 
the correlation analysis, we found some interesting features that 
are worth looking into. For example, afect_valence_mean is posi-
tively correlated to the well-being score and afect_valence_var is 
negatively correlated to the well-being score (Fig. 3). This indicates 
that days in which participants use words that refect more posi-
tive afect were associated with better well-being. Days in which 
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Table 2: Permutation feature importance of the top 11 most 
important features and their importance. 

Feature 

mfcc_1_var 
POS_NP 
LIWC_1_Physcal 
length 
LIWC_Cogmech 
LIWC_Afect 
LIWC_I 
LIWC_Self 
mfcc_1_mean 
afnn 
opinion_positive 
POS_TO 

Type 

Audio 
Text 
Text 
Audio 
Text 
Text 
Text 
Text 
Audio 
Text 
Text 
Text 

RMSE 
imp. rank 

0.060 1 
0.015 2 
0.014 3 
0.009 4 
0.008 5 
0.004 6 
0.003 7 
0.003 8 
0.003 9 
0.002 10 
0.002 11 
0.000 22 

MAE 
imp. rank 

0.034 1 
0.010 3 
0.011 2 
0.003 8 
0.004 7 
0.006 4 
0.004 6 
0.004 5 
0.001 11 
0.003 9 
0.000 34 
0.001 10 

participants use words that contain less fuctuations in afect are 
also positively associated with well-being. This is aligned with 
[37]’s research conclusion that afect is related to well-being, which 
strengthens the Baseline2 (Section 3.4) of the model performance 
evaluation. 

Table 1 shows the fnal features used in the models after all the 
feature selection process. 

3.3.1 Variance. During the correlation analysis, we also found that 
some features, like 28 emotional words, have most of the values 
being 0. When values in a feature are mostly identical, i.e., having a 
low variance, this feature is less predicative [16]. To remove these 
low-variance features, we calculated the variances of all features 
and kept the half of them with higher variance. In addition, text 
features with variance smaller than 0.1 were also removed. 

3.3.2 Text Vector Comparison. Because the text features were many 
and sparse, we chose the most efective text vector by comparing 
the efectiveness of BOW, TF-IDF, and word lemma frequency rep-
resentations using Linear Regression with linear kernel in a 10-fold 
Cross Validation (CV). The dataset is split into 10 folds. In each 
of the 10 rounds, 1 of the folds was selected as the testing set and 
the remaining 9 folds were used as the training set. The test errors 
of each round are averaged to evaluate model efectiveness. This 
methodology was also applied to Section 3.3.3 and 3.4 requiring 
models comparison. The results showed that TF-IDF had a signif-
cantly lower mean squared error (MSE) than the other two word 
vectors (TF-IDF MSE=1.36; BOW MSE=3.58; Lemma MSE=4.41). 
Therefore, TF-IDF was used in the well-being score prediction mod-
els. However, as the TF-IDF still had 970-dimension features, we 
tested the performance of TF-IDF separately from the remaining 
textual features in the prediction models. 

3.3.3 Linear Regression Feature Importance. After removing sparse 
features and those with low variance, 44 textual features (not count-
ing TF-IDF) were left. To further reduce the feature dimensionality, 
we fltered the remaining textual features based on their feature 
importance using the absolute value t-statistic of the feature [24]: 

β̂j β̂j β̂j
= = ∝ where β̂j is the jth coefcient, SE ist β̂j SE(β̂j ) σ (β̂j ) σ (β̂j ) 

the standard error, 
√ 
n 

σ is the standard deviation and n is the number 
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Figure 3: Afect valence and well-being 

of samples. To obtain the coefcients and the standard deviation, 
a 10-fold CV Linear Regression with linear kernel was run. We 
selected the half of the features with the higher importance values. 

3.4 Well-being Score Prediction 
Before building the models, we frst determined the optimal hy-
perparameters using Grid Search. Afterwards, the model with the 
optimal hyperparameters was trained and tested using 10-fold CV. 
We tested multiple algorithms, i.e., linear regression with non-linear 
kernels, Multilayer Perceptron (MLP), Decision Tree, Support Vec-
tor Machine (SVM), Random Forest and AdaBoost. To understand 
whether both audio and textual features were necessary in the pre-
diction, we also tested diferent feature sets. We used both Root 
Mean Squared Error (RMSE) and Mean Absolute Error (MAE) to 
measure model performance, with the goal of minimizing the errors. 

3.4.1 Performance Analysis. Across all models tested, the two base-
lines are almost always the least accurate with the highest errors, 
strongly suggesting that the audio recordings contained important 
information in predicting well-being. 

Of all combinations of machine learning models and feature 
sets, Multilayer Perceptron with text features except TF-IDF word 
vectors has the best performance (bolded red values in Table 3). 
However, when using other feature sets, SVM constantly had the 
best results (bolded values in Table 3). Furthermore, the hyperpa-
rameter searching and training time for SVM was much shorter 
than MLP. Considering the very small decrease in error and the big 
gain in computation time, SVM was the best model for the dataset 
and the problem. With SVM, the best feature set was the audio and 
text features except TF-IDF word vectors. This suggests that audio 
recordings and the automatically transcribed text have value in 
predicting well-being in every-day settings for the general public. 

https://MSE=4.41
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Table 3: Well-being score prediction 10-fold CV error. Lower 
RMSE and MAE indicates better results. For each feature set, 
results for the best performed algorithm is in bold. (Well-
being rage=-2.65∼1.06) 

Linear Re- MLP Decision SVM Random AdaBoost 
gression Tree Forest 

Baseline1: EMA RMSE 0.756 0.763 0.781 0.751 0.752 0.746 
survey features MAE 0.635 0.622 0.629 0.577 0.620 0.599 
Baseline2: Afect RMSE 0.762 0.791 0.781 0.755 0.764 0.775 
features MAE 0.630 0.658 0.648 0.601 0.632 0.632 

TF-IDF 
RMSE 
MAE 

0.715 
0.603 

0.722 
0.595 

0.781 
0.600 

0.716 
0.581 

0.719 
0.589 

0.762 
0.612 

Text features except RMSE 0.686 0.647 0.801 0.692 0.734 0.728 
TF-IDF MAE 0.551 0.521 0.616 0.533 0.572 0.587 
Text features RMSE 0.715 0.722 0.739 0.681 0.723 0.792 
including TF-IDF MAE 0.603 0.595 0.602 0.538 0.590 0.626 

Audio features RMSE 
MAE 

0.683 
0.551 

0.712 
0.545 

0.778 
0.609 

0.680 
0.542 

0.725 
0.599 

0.785 
0.610 

Audio + text features RMSE 0.684 0.715 0.822 0.665 0.718 0.740 
except TF-IDF MAE 0.549 0.570 0.660 0.522 0.592 0.580 

3.4.2 Permutation Feature Importance. We used the permutation 
feature method to understand the relative importance of the feature 
in predicting well-being, by removing a single feature and observing 
the increase in error [24]. Permutation feature importance was 
calculated using both the RMSE and MAE metrics, the same metrics 
used in Section 3.4. The error was obtained using the best SVM 
model in Section 3.4 and 10-fold CV. 

The top most important features were mostly in agreement 
across RMSE and MAE. Note that the 11th most important fea-
ture ranked by RMSE (opinion_positive), surprising, has a close to 
zero negative importance when measured by MAE. This means 
that removing positive opinion word features will introduce more 
extreme errors. More generally, more than half of the most im-
portant features were semantic textual features. This confrms the 
importance of text in predicting one’s well-being and audio fea-
tures alone would not be sufcient. LIWC features were especially 
informative as 6 of the 11 features were from LIWC categories. The 
importance of I and self-related words is consistent with existing 
work on the association between self-focus, observed as the fre-
quency of frst-person pronouns, and many well-being measure, 
such as depression, anxiety, and negative mood [25, 41]. 

To summarize, our model produces a prediction result within 
±0.52 (14.1% of the total well-being score range) of the “ground 
truth” or survey based values of well-being scores. This suggests 
that short audio recordings are valuable in predicting one’s well-
being in daily-settings. Both audio and textual feature are critical to 
the prediction performance. Next, we conducted an error analysis 
to understand reasons for this error. 

3.4.3 Error Analysis. To better understand entries with high errors, 
predictions made by the best-performed model-feature combination 
(i.e., SVM model using audio and text features except TF-IDF) are 
ranked by the squared error of the predicted well-being score. We 
examined the top 10 and 20 entries with the highest errors. As both 
sets of high-error entries lead to similar conclusions, we will only 
show top 10 entries for reasons of space (Table 4). 

Fig. 4 shows that all high error entries have a well-being score 
lower than -1, with all but one being less than -1.5. As the well-being 
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Table 4: Top 10 error entries by participant. 

Participant Date (YY-MM-DD) Error 

SAS2002 2019-07-19 2.80 
SAS2004 2019-07-29 3.23 
SAS2008 2019-07-28 2.40 
SAS2015 2019-08-30 3.08 
SAS2015 2019-08-31 3.86 
SAS2015 2019-09-01 3.10 
SAS2015 2019-09-02 7.60 
SAS2016 2019-08-30 2.19 
SAS2027 2019-11-02 2.28 
SAS2027 2019-11-03 5.29 

error group
low
high

0 1 2 3 4 5 6 7
Error

2.5
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1.0

0.5
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Figure 4: High error entries (in orange) distribution. High 
error entries mostly have negative well-being. 

score was standardized (with the SD being 0.74), these points were 
efectively 2 SD below the sample average, meaning that these high-
error cases were the low 5% of the data. As there are only a few of 
these cases, the models did not efectively learn the representation 
of these data points, which lead to high errors. These high error 
entries also mostly came from the same participants (Table 4). Four 
of the 10 high error entries were from participant SAS2015 and 
2 from SAS2027. A commonality between these participants was 
that they usually only had negative well-being entries. This again 
confrms the insight that the unbalanced positive and negative 
well-being scores may be the reason for high error. 

4 DISCUSSION 
The current work demonstrates the possibility of using short audio 
recordings in every-day settings to predict one’s well-being. Our 
models produce prediction results within ±0.52 (14.1% of the total 
well-being score range) of the reported well-being scores using 
SVM with both text and audio features from the recordings (exclud-
ing TF-IDF features). This result outperformed the 2 baselines, i.e., 
predictions based on self-report data describing respondents’ social 
interactions and their mood. This suggests that short voice record-
ings, made on smartphones in every-day settings and in contrast 
to always-on audio capture, can be used as inputs to predict well-
being. Among the features used, MFCC and afect-related features 
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are valuable for predicting well-being. In addition to the perfor-
mance evaluation, this work opens up opportunities to further 
improve prediction results. 

First, from the Error Analysis in Section 3.4.3, the lack of nega-
tive well-being representation is a main reason why the machine 
learning models cannot work more efectively. A more balanced 
positive and negative well-being dataset will help with this issue. 
In addition, the current study contains a small dataset. While this 
demonstrates the possibility of getting good prediction results with 
a small dataset, more data points will not only help improve the 
prediction results but also gives more room to balance the outcome 
class. This can be done by having more participants, conducting 
longer studies, making the audio recording a required task. 

There are other areas that future work can improve on. First, 
the current study did not provide much guidance on what people 
should record (Fig. 1), As a result, most of the participants left very 
brief recordings. Having a more structured instruction will help 
collect longer audio samples, which provides more robust features 
for machine learning. Moreover, The current work only predicts 
people’s well-being at the end of the day. The research could be 
improved by collecting a more continuous and instantaneous pre-
diction of well-being, e.g., multiple times a day. Not only would 
more data improve prediction accuracy, it could also be used to bet-
ter understand the events that infuence well-being. Finally, future 
work is needed to test the generalizability of the models with other 
samples. 

It is also worth-noting the trade-ofs of using audio-based pre-
diction. These recordings are much faster to collect compared to 
multi-item survey questions. Also, the results are less prone to sub-
jective bias that may be present when flling out surveys. However, 
audio recordings are difcult to do in situations such as in a library 
or during a lecture. Under these circumstances, text-based descrip-
tions can be used as an alternative as our results suggest that models 
using only text-based features can yield decent performance. 

5 CONCLUSION 
Using text and audio features from short audio recordings in every-
day setting can predict one’s well-being. In particular, MFCC, afect-
related, and semantic-related measurements are valuable for the 
prediction. We also identify directions for future studies to further 
improve the performance. 
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