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           Why Agent-Based Modeling? 

 Decades have passed since the inception of the fi eld of Human–Computer 
Interaction. The emergence of the Internet has shifted researchers’ attention from 
understanding how individuals interact with computers to understanding how indi-
viduals interact with one another using computer technologies. A wide range of 
systems designed for multiple users have been labeled as groupware, collaborative 
computing, multiuser applications, and more recently social computing technolo-
gies. Designing these types of system is more challenging than designing single- 
user ones because other people and their behaviors are integral elements of the 
system as experienced by users (Grudin,  1994 ). The system itself, therefore, is non-
deterministic and evolutionary because the experience of some users is partly the 
result of decisions that earlier users have made. Because the behavior of a multiuser 
system is not stable until a critical mass of users has developed a routine way of 
using it, it is diffi cult to predict how groups of users will respond to a particular 
design before the stable state is reached. As a result, interactive design and evalua-
tion cycle, perhaps the most successful HCI technique for system design, is insuf-
fi cient for the design of multiuser applications. 

 Consider the design of an online health support group like breastcancer.org and 
the decision about whether to employ moderators who ensure group members spend 
their time discussing cancer-related topics, channel off-topic content to sub-forums, 
or prevent users from posting advertisements. A member’s decision to participate in 
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the community depends in part upon the content that other members post and what 
moderators, if they are used, allow. But how should the designers go about deciding 
whether moderators will improve the site? Building different versions of the site 
with alternative design options would be impractical and costly. Another solution is 
to use computational modeling to simulate a system before building it. The simula-
tion can be used to run virtual experiments to evaluate users’ likely reaction to 
alternative design choices and to predict how it will actually be used under various 
scenarios. Assuming that the simulation can replicate known patterns of behavior in 
the phenomena it attempts to replicate, it also can be used to predict reactions to as 
yet undeveloped features. 

 A computer simulation is a program that embodies a partial theory of how some 
phenomenon operates. The method has been used for decades by social scientists to 
understand a wide variety of social dynamics and processes. For example, Schelling 
( 1971 ) created a simple model to show how residential segregation can emerge even 
when most members of a community would tolerate living in an ethnically mixed 
environment. It is “runnable” in the sense that a scientist can turn on and off or vary 
input parameters (e.g., the initial sizes of the ethnic groups, the strength of members’ 
preference for diversity or speed of housing turnover), and the simulation will gener-
ate output to predict e.g., the extent to which the society will become segregated. 

 A similar approach can be taken to study HCI phenomena characterized by bot-
tom- up, self-organizing, and complex interactions among individual users. For 
example, the use of social media such as wikis, blogs, social networking, and social 
bookmarking has become very prevalent in many organizations (Treem & Leonardi, 
 2012 ) and has attracted great interest from HCI researchers (e.g., DiMicco et al., 
 2008 ; Shami, Ehrlich, Gay & Hancock,  2009 ; Thom-Santelli, Millen & Gergle, 
 2011 ; Wu, DiMicco & Millen,  2010 ). Simulation can answer questions such as the 
following: How does usage spread within an organization? What patterns will 
emerge in the use and adoption of these technologies by individual users? How will 
the adoption and use of such technologies change organizational hierarchy? How 
can an organization align system design, incentives, and its culture and policies to 
encourage effective use of the technologies? 

 Scientists and engineers have built several genres of simulation to simulate social 
systems, including statistical, causal models, mathematical models, system dynam-
ics models, neural networks, cellular automata, multilevel simulations, evolutionary 
models, and agent-based models (Taber & Timpone,  1996 ). In this chapter we focus 
on agent-based modeling as a tool to inform the design of multiuser systems and to 
advance our knowledge of how these systems operate because of the isomorphism 
between the systems we are attempting to simulate and the simulation techniques. 
An agent-based model simulates a multiuser system by modeling the behaviors of 
and interactions among individual users who comprise the system. We start with a 
brief review of the method, followed by our key contribution, a seven- step roadmap 
that HCI researchers can follow to build or evaluate agent-based models. We then 
describe how we followed the steps and built an agent-based model that can inform 
the design of online communities. In the end, we share a personal account of how 
we encountered the method and include references for readers who would like to 
learn more about the method.  
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    What is Agent-Based Modeling? 

 Agent-based modeling is a form of computational simulation that “enables a 
researcher to create, analyze, and experiment with models composed of agents that 
interact within an environment” (Gilbert,  2008 ). The agents can imitate a wide vari-
ety of physical and social entities such as human beings, animals, particles, or mol-
ecules. Agent-based modeling is similar to mathematical modeling in terms of rigor 
but better suited for situations when agents are autonomous and heterogeneous, 
when there are complex interactions between agents, and when lower-level actions 
and interactions can lead to the emergence of system-level structures. Compared 
with conventional methods of developing theories in social sciences, agent-based 
modeling is especially suitable for bottom-up theorizing (Kozlowski & Klein, 
 2000 ), and for understanding how individual agent behaviors interact over time and 
lead to emergent system-level patterns. 

 The system-level regularities are often the results of multiple forces working 
together. The tension among the forces may be temporal, structural, or spatial and 
often result in nonlinear relationships like tipping points (Davis, Eisenhardt & 
Bingham,  2007 ). A famous example is Reynolds’ “boids” model ( 1987 ) that simu-
lates the behaviors of fl ocks of birds. The agents in this model are birds with limited 
perception programmed with three simple rules as illustrated in Fig.  1 : separation to 
avoid getting too close to other birds, velocity to travel at the speed of nearby 

  Fig. 1    Illustration of 
Reynold’s boids model 
(Reprinted with permission 
from   http://www.red3d.
com/cwr/boids/    )       
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fl ockmates, and cohesion to head for the perceived center of nearby fl ockmates. The 
model does a remarkable job of replicating how fl ocks of birds fl y together without 
bumping into each other. This tension of wanting to follow the crowd but not get too 
close applies to many human groups, too.    

   The history of agent-based models dates back to Von Neumann in the late 
1940s, when he developed a machine that was capable of self-replicating (Gilbert, 
 2008 ). His creation of a self-replicating automaton without a computer eventually 
led to the creation of cellular automata, a popular technique for doing agent-based 
modeling by placing individual agents on a two-dimensional lattice or grid of cells 
and observing what patterns emerge as they interact with neighbors (Davis et al., 
 2007 ). The idea motivated the creation of Conway’s Game of Life (Gardner,  1970 ) 
and gradually, the method morphed its way from mathematics into economics, 
social science, and other disciplines. The social science version of the game is 
called the Sugarscape model, created by Epstein & Axtell (1996) to simulate and 
study human societies.    

 In the past two to three decades, agent-based modeling has become much more 
widespread due to the exponential growth of computing power. A wide variety of 
models have been developed to simulate physical and social phenomena, such as 
fl ow in sand piles and the activities of animals such as birds and ants (Sawyer, 
 2003 ), social and organizational behaviors in cooperation and collective action 
(Macy,  1991 ), learning (March,  1991 ), social infl uence and norm formation 
(Axelrod,  1986 ;    Axelrod,  1997a ,  1997b ), cultural dissemination (Harrison & 
Carroll,  1991 ), and innovation diffusion (Strang & Macy,  2001 ).  

    How Can Agent-Based Modeling Inform HCI Theory 
and Design? 

 Agent-based modeling can be used for a wide range of purposes such as  descrip-
tion  of behaviors and  training  managers to make better decisions (Burton & Obel, 
 1995 ),  development  of theories of the conditions or mechanisms that generate 
certain behaviors (Davis et al.,  2007 ),  discovery  of unexpected consequences of 
local interactions, and  prescription  to suggest better modes of operation or orga-
nization (Harrison, Lin, Carroll & Carley,  2007 ). We believe there are at least two 
important ways in which agent-based modeling can be leveraged in HCI research: 
to advance theories related to multiuser systems and to inform the design of these 
systems as well as interventions, policies, and practices surrounding them. The 
former corresponds to the use of agent based modeling to  explain  mechanisms, 
processes, or conditions that lead to certain behaviors and the latter corresponds 
to the use of agent-based modeling to  prescribe  actions to obtain desired 
outcomes. 

 A good example to illustrate the use of agent-based modeling to  advance theory  
is the Shape Factory model developed by Nan and colleagues ( 2005 ,  2008 ). Their 
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research began with a laboratory experiment to investigate how geographic separa-
tion infl uences the performance of collocated and remote workers. Ten partici-
pants, fi ve collocated and fi ve remote, earn points by making and buying parts of 
different shapes to fi ll “customer” orders. A puzzling pattern emerged, in which 
collocated and remote players were equally successful even though collocated 
players had communication advantages. Two theoretically plausible mecha-
nisms—in-group favoritism and communication delay—could have been at work, 
but they were confounded in the experiment, making it impossible to isolate their 
independent effects. 

 Agent-based modeling is well suited for addressing such challenges because it 
grants researchers the ability to computationally turn a mechanism on and off and 
observe how outcomes change as a result. Using behavioral patterns observed in the 
lab experiments as benchmarks, Nan and colleagues ( 2005 ,  2008 ) developed an 
agent-based model to separate the effects of in-group favoritism and communica-
tion delay. They implemented the two mechanisms as two behavioral rules: in-group 
favoritism meant collocated agents always transacted business with other collocated 
agents before contacting remote agents; communication delay meant a one-step 
time delay in communications with all remote agents. Their simulation results sug-
gested in-group favoritism actually had a detrimental effect on the performance of 
collocated players (by limiting themselves to transact with only local agents) 
although (lack of) communication delay had a positive effect on their performance. 
The two effects cancelled out each other in the laboratory experiment and would be 
hard to disentangle without agent-based modeling. 

 The Nan study illustrates how agent-based modeling can be used to complement 
other empirical methods, in this case laboratory experiments, to enrich our theoreti-
cal understanding of the working of multiuser systems. As Davis et al. ( 2007 ) sug-
gest, simulation occupies a “sweet spot” between theory-creating methods such as 
case studies and formal modeling, and theory-testing methods, such as survey and 
experiments. The model needs to be grounded in theoretical insights and empirical 
evidence, and in turn it can expand our understanding beyond the conditions that 
were observed in early research. 

 Because researchers in management, public policy, and sociology have already 
documented how to use simulation to develop and test theories (Axelrod,  2005 ; Davis 
et al.,  2007 ; Harrison et al.,  2007 ; Macy & Willer,  2002 ), in this chapter, we focus on 
the use of agent-based modeling in HCI research to inform the design of multiuser 
systems and policies and practices surrounding them. We use online communities as 
an example of multiuser systems. A key challenge in designing online communities 
is that designers must make numerous decisions about features, structures, and poli-
cies. Even experienced designers can be overwhelmed by the trade- offs involved in 
the decisions and fail to anticipate how users will respond. For instance, when 
 launching an online community, if a community offers points for contributions and 
recognizes the most active contributors on a public “leader board,” this feature may 
encourage the least active participants to increase their level of contribution, 
and heavy contributors to contribute less if the former perceive themselves as 
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under-contributing and the latter perceive themselves as over-contributing; moreover, 
it could discourage most community members from contributing at all if they per-
ceive that the leaders are providing suffi cient content. 

 These contradictory predictions originate from two social science theories: social 
comparison theory (Festinger,  1954 ) and the Collective Effort Model (Karau & 
Williams,  1993 ). The former argues that people are motivated to match their perfor-
mance to the performance of similar others, and thus increase their effort when 
being told that others have contributed more than they have (Harper et al.,  2007 ). 
The latter argues that people exert less effort when working in groups than individu-
ally because they perceive their efforts are unnecessary to achieve group outcomes. 
Perhaps because of contradictory predictions like these, theories from social psy-
chology, organizational behavior, sociology, and economics have been applied to 
describe behaviors in online communities, more than they have been applied pre-
scriptively, to offer solutions for building successful communities (see Ling et al., 
 2005 , for exception Kraut & Resnick  2012 ). 

 An important reason that these social science theories seem ill suited for design 
is that the logic of design, which manages trade-offs among tens or hundreds of 
parameters that can infl uence members’ behaviors, is at odds with the logic of social 
science research, which examines the infl uence of a small set of variables while 
holding everything else equal. Agent-based models can bridge this gap, by synthe-
sizing insights from multiple theories to identify the pathways through which par-
ticular design choices will affect the different outcomes that designers aim to 
achieve. In other words, agent-based models can be used to link and integrate what 
Davis et al. ( 2007 ) termed “simple theories” to infer “the combined implications of 
several theoretical assumptions or empirical results” (Taber & Timpone,  1996 , p. 6).  

    What Constitutes Good Work: A Seven-Step Roadmap 

 In this section, we provide a roadmap with a set of guidelines HCI researchers can 
follow to build agent-based models, as shown in Table  1 . To make the guidelines 
concrete and accessible, we use our personal experience to demonstrate how we 
followed these guidelines and built an agent-based model to inform the design of 
text-based online communities. We assume that you already have a research ques-
tion and wonder if agent-based modeling is the appropriate method to study it. 

    Step 1: Evaluate the Appropriateness of Agent-Based 
Modeling for the Research Question 

    Whether agent-based modeling is appropriate for your research depends on several 
factors: the phenomenon of interest, the level of analysis of your research questions, 
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and the working body of knowledge from which you can borrow insights to ground 
the model. Phenomena well suited for agent-based modeling typically have the fol-
lowing characteristics:

    1.    They involve the actions and interactions of individual agents.   
   2.    Individual agents have heterogeneous motivations, interests, or behaviors.   
   3.    Individual agents form a large social system whose structure is determined by 

individual actions and the size and structure of the social system, in turn, shape 
individual behaviors.   

   Table 1    Roadmap for using agent-based modeling (ABM) to inform HCI design   

 Steps  Activities/questions 

 Evaluate the appropriateness of 
ABM for your research question 

 – Can the overall system behavior be decomposed into 
decisions and actions by autonomous interacting 
agents? 

 – Are their decisions and actions infl uenced by multiple 
forces? 

 – Is the system likely to be multilevel, nonlinear, and 
dynamic? 

 – Are there simple theories or empirical evidence 
available to ground the model? 

 Defi ne boundary conditions and 
build a conceptual model 

 – Decide the scope of the model (types of agents, types 
of objectives, types of agent behaviors, the larger 
environment) 

 – Identify theories to help construct the conceptual map 
 – Identify key variables in the conceptual map 
 – Start with a simple model and gradually expand 

 Translate the conceptual model to 
computational representations 

 – Operationalize three key elements: agents, environ-
ment, and timescale 

 – Translate theories to behavioral rules governing 
agents’ motion, communication, and action 

 – Simulate time as forced parallel 
 Implement the model  – Decide whether to use an existing platform or build 

from scratch 
 – Compare and choose a platform if needed 
 – Program, debug, test the program 

 Validate the model  – Check program to make sure that it is an accurate 
translation of the conceptual model and is bug free 

 – Calibrate the model by modifying the model to match 
theory predictions, stylized facts, or empirical training 
data 

 – Test the external validity of the model by comparing 
simulation results with theory or empirical testing data 

 Experiment with the model  – Design virtual experiments (determine key factors and 
their values or range and number of runs) 

 – Set parameters with theoretical or real-life values 
 – Run experiments and gather output data 

 Publish the model and results  – Provide suffi cient detail for others to replicate the 
model 

 – Arrange to share the source code 
 – Discuss practical as well as statistical signifi cance 
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   4.    The system dynamically evolves over time as individual agents interact with one 
another, and as a result, it can be characterized as multilevel, nonlinear, and 
dynamic.

       Here are some sample HCI problems that agent-based modeling may help tackle:

•     Attention management in communication exchanges.  Spontaneous, informal 
communication at work is important, yet, it often helps the initiator of the com-
munication at the expense of the person being interrupted (Perlow,  1999 ). 
Interventions designed to balance the benefi ts and costs of spontaneous commu-
nication have often had unforeseen consequences. For example, pricing systems 
that increase the cost of interruptions can reduce the volume of communication 
below optimal levels (e.g., Kraut et al., 2002) or awareness displays that show 
when someone is interruptible can increase instead of reducing interruptions 
(e.g.,    Fogarty, Lai & Christensen,  2004 ). Agent-based models can help predict 
the long term impact of alternative interventions.  

•    Feedback mechanisms in online contribution.  Online production communities like 
Wikipedia need high quality contributions. Interventions that aim to increase qual-
ity often have unintended consequences on the contributors. For example, making 
new members pass a quality test can increase their quality and motivation but 
reduce the number of members who join (Drenner, Sen & Terveen,  2008 ), and giv-
ing contributors corrective feedback may direct their attention away from the task 
and towards themselves and harm their performance (Kluger & DeNisi,  1996 ). 
Agent- based models can help community leaders manage these trade-offs.    

 To reiterate, several common themes run through these examples that make them 
appropriate for agent-based modeling. First, the phenomena are generated  bottom-
 up,  in the sense that individuals make autonomous decisions and the outcome—
whether it is the success or failure of a system or communication patterns—are 
jointly determined by individual actions and interactions. Second,  multiple forces  
drive individual behaviors, implying the model needs to combine multiple theories 
to be a valid representation of reality. Finally, the system-level regularities cannot be 
intuitively predicted based on rules for individual actions because the multiple 
forces affecting behaviors may work in opposite directions or cancel each other out. 

 These examples draw upon relatively mature theoretical and empirical under-
standing of the phenomena being studied. Such understandings should be past the 
exploratory stage, with suffi cient literature available to ground the model. It is ideal 
to have multiple theoretical propositions or empirical results, none of which seems 
capable of explaining the observation alone but collectively have the potential to do 
so (Taber & Timpone,  1996 ). For example, an agent-based model to simulate how 
starting conditions infl uence a community’s success can rely upon a rich literature 
on critical mass (Markus,  1987 ), network externalities (e.g., Shapiro & Varian, 
 1999 ), organizational ecology (Hannan & Freeman,  1989 ), and group commitment 
(e.g., Mathieu & Zajac,  1990 ). It is also desirable to have ways to gather new empir-
ical data to fi ll in detail of the model where theories are silent or fail to provide detail 
to specify functions or parameters.  

Y. Ren and R.E. Kraut



403

    Step 2: Defi ne Boundary Conditions and Build 
a Conceptual Model  

 Agent-based models, like mathematical and statistical models, are a simplifi ed 
 representation of reality. It is crucial to clearly defi ne the boundaries of a model to 
capture the essence of the phenomenon being studied. Many multiuser systems are 
complex by nature, involving agents in different roles, artifacts of different types, 
and complicated connections between agents, artifacts, and their environment. 
For example, work in Wikipedia occurs in 270 different languages and depends 
upon the contribution of tens of thousands of volunteer editors who take on a 
 variety of tasks from creating new articles to writing policies (Bao et al.,  2012 ; 
Welser et al.,  2011 ). The editors are organized into hundreds of subgroups known 
as WikiProjects, and they collaborate on a technical infrastructure run by a non-
profi t organization. The content ultimately becomes viewable to tens of millions of 
Internet users. If you were to build an agent-based model to understand the  working 
of Wikipedia collaboration, where should you draw the boundaries? Besides edi-
tors and articles, should Wikipedia readers or other agents like the bots (automated 
programs) that repair vandalism be explicitly modeled? What about higher-level 
social entities like WikiProjects or the Wikimedia Foundation, which supports 
Wikipedia’s infrastructure? 

 These are nontrivial decisions, and the answers are not straightforward. Trade- 
offs between simplicity and reality or between parsimony and accuracy plague 
agent-based modeling. An agent-based model, while needing to be suffi ciently 
comprehensive and complete to be accurate, also needs to be a simplifi ed represen-
tation of reality to be useful (Gilbert,  2008 ). Complex models can be more accurate 
in their predictions but are more diffi cult to debug and may become so incompre-
hensible that readers or even its developers have diffi culty deciphering how varia-
tions in the model’s features lead to its results. The right decision, therefore, requires 
a balance of capturing the central phenomenon while stripping away the nonessen-
tials. To a large extent, this balancing act is a judgment call (Davis et al.,  2007 ) or 
“the art of simulation” (Harrison et al.,  2007 ). There are no universally correct 
answers; settling on one depends on individual researchers’ preferences and style 
of research. 

 Some modelers lean toward simplicity. Simple models are especially good for 
theory development, exemplifi ed by Schelling’s ( 1971 ) racial segregation model. 
Simple models can be quite powerful if unexpected system-level patterns can be 
generated with simple rules at the agent level. On the other hand, simple models 
often fall short of making accurate predictions to guide practice because they fail to 
incorporate all the important forces or mechanisms driving a phenomenon. Agent- 
based modeling needs a reasonable level of complexity to provide useful guidance 
to design. Even when building complex models, a good practice is to start with a 
simple model and gradually expand to add more fi delity. 

 Once the boundaries are established, researchers can identify the important 
concepts they want to capture in the model and their relationships. Taber and 
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Timpone ( 1996 ) suggest the practice of creating “an inventory of concepts on 
paper when dealing with a complex model” (p. 15). This concept inventory should 
defi ne the concepts in qualitative terms and propose a loose notion of how they 
might be operationalized. Researchers should consider theories from multiple dis-
ciplines to ground their models, because social behaviors and processes cannot be 
decomposed into separate subprocesses that neatly match the artifi cial divisions of 
different disciplines (Epstein,  1999 ). Individual behaviors can be driven by eco-
nomic, psychological, political, and technological factors, and researchers should 
not let disciplinary boundaries prevent them from identifying important aspects of 
a phenomenon.  

    Step 3: Translate the Conceptual Model 
into Computational Representations 

 The next step is to operationalize the conceptual model by translating theoretical 
relationships to assumptions, agent attributes, and behavioral rules. Gilbert ( 2008 ) 
identifi ed three key elements to specify an agent-based model: agents, environ-
ments, and timescales. An agent can be a person, animal, or object. Agents imitating 
humans can engage in the following activities:

•    Perceive the environment including the presence of other agents or objects in 
their neighborhood.  

•   Perform a set of behaviors, such as moving within a space, communicating 
(sending messages to and receiving messages from other agents), acting or inter-
acting with the environment (such as joining a group or contributing information 
to a corporate wiki).  

•   Remember their previous states, actions, or consequences (e.g., for learning 
purpose).  

•   Follow policies or adopt strategies that determine what actions to take next.    

 In the Shape Factory simulation, agents’ perceptions of the environment include 
the awareness of collocated and remote players and the shapes they produce. Agents 
could not move but could communicate by sending and fulfi lling shape requests. 
Agents did not have memories and could not learn from past behaviors. They did 
not engage in sophisticated strategies although they had a goal of maximizing the 
number of orders they fi lled. 

 In more complex models, agents could engage in more sophisticated behaviors. 
For instance, in an model developed to study transactive memory, agents possessed 
knowledge about both their own and other agents’ areas of expertise (Ren, Carley & 
Argote,  2006 ). The transactive memory enabled agents to effi ciently search for 
information and assign tasks to those with specialized knowledge. 

 Timescale is another key element in translating theories to agent behaviors. The 
order in which agent behaviors occur can signifi cantly infl uence simulation results 
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because output from early agents changes the environment that other agents 
 experience later. For example, in simulating an online discussion group, researchers 
must consider whether a post will be broadcast to all other agents immediately after 
it is posted or kept in a repository until all agents fi nish the current round of activi-
ties. The choice arises because parallel processing is computationally costly, but 
less costly modeling procedures can approximate it. For example, researchers can 
buffer all interactions in the environment (e.g., recent messages posted in a com-
munity) and wait until all actions are completed before displaying the new interac-
tions (i.e., new messages) to all agents. In the jargon of agent-based modeling, 
actions can be organized in staged episodes, with time simulated as “forced  parallel.” 
This technique is also called “simulated synchronous execution” (Gilbert,  2008 ). 
A useful tool in model design is a fl owchart, which shows the sequence of actions 
together with the conditions under which a rule applies or an action is taken.  

    Step 4: Implement the Model 

 The implementation step is often mistaken as the core of agent-based modeling (all 
you need to do is to write computer code which will generate tons of numbers, 
right?). Implementation is important in the sense that the modeler must accurately 
translate the conceptual model to computer code so that the program runs effi ciently 
and is bug free. Compared to the conceptual model, however, implementation is less 
important. Without a valid conceptual model, whatever data you get from the simu-
lation will be worthless, i.e., “garbage in, garbage out.” 

 There are typically two options for implementing an agent-based model: build on 
an existing simulation platform like NetLogo (Wilensky,  1999 ) or code it from 
scratch using a general-purpose computer language like Java, Python, or C++. This 
choice determines the user interface that the modeler will use to interact with the 
model. Myers and colleagues ( 2000 ) have identifi ed criteria for evaluating user 
interface software. Criteria that are especially important in choosing tools for agent- 
based modeling include the software’s threshold (i.e., the diffi culty in learning the 
system and building initial software), ceiling (how much can be accomplished with 
the software), path of least resistance (i.e., whether the software helps the user pro-
duce appropriate models), and stability (i.e., whether the software is changing too 
rapidly for its users to gain signifi cant experience with it). 

 Each approach has its pros and cons. Which to choose depends on the complex-
ity of the model, the researchers’ timeline and programming skills, and the extent to 
which a decent user interface and add-on features such as network analysis and 
visualization are needed. For beginners, we recommend building on a platform such 
as NetLogo (  http://ccl.northwestern.edu/netlogo/    ), Repast (  http://repast.source-
forge.net/    ), or Mason (  http://cs.gmu.edu/~eclab/projects/mason/    ), especially if the 
model is simple, can be built using standard modules or if researchers have limited 
programming skills. Even experienced programmers can save a great deal of time 
and effort by building on a platform. On the other hand, if the model is complex and 
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requires functions that are unavailable in established platforms, it can be diffi cult to 
coerce the platform to fi t your purpose. If so, building from scratch may be the only 
option. The fi rst author’s experience of developing a model to simulate transactive 
memory systems fi ts this category. A key element of the model was the concept of 
transactive memory that stores information about other agents’ areas of expertise 
(Ren et al.,  2006 ). Existing platforms did not have a built-in module that can be 
modifi ed to simulate the working of a transactive memory system. Therefore, we 
built our own model using Java. It was a multiyear effort (close to 3 years including 
model validation) but it allowed us to capture the core concept we wanted to study. 

 Detailed reviews and comparisons of agent-based modeling platforms are avail-
able from several sources. Gilbert ( 2008 ) compares four platforms—Swarm, Repast, 
Mason, and NetLogo—on user base, speed of execution, support for graphical inter-
face and systematic experimentation, and ease of learning. He reports that “NetLogo 
stands out as the quickest to learn and the easiest to use, but may not be the most 
suitable for large and complex models. […] Repast has the advantage of being the 
newest … but also has a signifi cantly smaller user base, meaning that there is less of 
a community that can provide advice and support” (p. 49). Our own experiences 
with the two platforms are consistent with Gilbert’s assessment. In addition, we 
recommend Repast for building large, complex models that are computationally 
demanding.  

    Step 5: Demonstrate the Internal and External 
Validity of the Model  

 The next step is to ensure that the model is a valid representation of reality. Doing 
so consists of three processes: verifi cation, calibration, and validation. Model  veri-
fi cation  involves checking that the agent-based model satisfi es its specifi cation, is 
correctly implemented and bug free (Gilbert,  2008 ). Model  calibration  involves 
tuning a model’s rules or parameters to produce results that match real data or styl-
ized facts (i.e., simplifi ed representations of empirical fi ndings) with reasonable 
accuracy (Carley,  1996 ). Model  validation  involves comparing model predictions to 
a holdout sample of data that was not used in the calibration process to see how well 
the two match (Gilbert,  2008 ). Verifi cation ensures internal validity or the degree to 
which the implemented model corresponds with the conceptual model and calibra-
tion and validation ensure external validity or the degree to which the model corre-
sponds with the real world (Taber & Timpone,  1996 ). All three processes can be 
time consuming so researchers must budget suffi cient time when planning the proj-
ect. No matter how carefully one has worked to develop a model, it will always 
contain bugs. Some bugs are obvious and easy to fi nd because they prevent the 
model from running or they generate anomalous results. Other bugs are harder to 
fi nd, because the model runs and produces results that appear superfi cially plausi-
ble. These bugs require more careful scrutiny and rigorous testing. Occasionally 
they survive the verifi cation process and get caught in calibration or validation when 
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researchers have diffi culty producing results that match theoretical predictions or 
empirical data (although sometimes it is the theory that needs to be modifi ed). 

 Once you are confi dent about a model’s internal validity, you can move on to 
assess its external validity with calibration and validation techniques. The two pro-
cesses are often confused as one. While both processes examine whether model 
output matches real world data, calibration involves the “tweaking” of the model 
iteratively so that its output matches (some of the) data. Validation involves run-
ning the model to assess its match to a new sample of data. To avoid overfi tting, a 
good practice is to split data into two sets: one set used to calibrate the model and 
the other used to validate the model (similar to training and testing sets in machine 
learning). 

 For calibration and validation, researchers often focus on assessing outcome 
validity by comparing model predictions with real-world data or with the predic-
tions of other competing models 1  (Taber & Timpone,  1996 ). The primary criterion 
is to show that the model can replicate the system-level regularities that the research 
seeks to explain (Gilbert,  2008 ). The replication can be assessed using multiple 
criteria such as correlations, analysis of variance, linear or nonlinear regression, or 
tests for comparison of means (Taber & Timpone,  1996 ). Carley ( 1996 ) describes 
four levels of assessing outcome validity:  pattern validity  requires the pattern of 
simulation results matches patterns of real data,  point validity  requires the output 
variables of the model, taken one at a time have the same mean as the real data, 
 distributional validity  requires the distribution of model output has the same distri-
butional characteristics as the real data, and  value validity  requires the highest level 
of precision in matching, that is, the model output matches the real data on a point-
by- point basis. Which level to choose is at the discretion of researchers depending 
on research purpose.  

    Step 6: Experiment with the Model 

 Once a model is validated, it can be used to run virtual experiments to generate 
simulated data for which no real data yet exist. This is the step where HCI research-
ers and practitioners will experience the value of agent-based modeling. They can 
vary parameters across a wide range and at great granularity—much beyond the 
level of control typical of fi eld studies or laboratory experiments. Once the model is 
built, the costs of running a virtual experiment are minimal. More importantly, 
researchers can open the proverbial “black box” by observing and analyzing 
intermediate variables to reveal the mechanisms or processes that cause the result-
ing patterns. 

1   Another rare form of model validation is called model alignment or “docking” in short, under 
which researchers compare two or more models to see if they can produce the same results. A good 
example is Axtell and colleagues’ work (1996) to align the cultural transmission model and the 
Sugarscape model. They call for wider practice of docking among modelers. 
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 Similar to laboratory experiments, a virtual experiment generates data for each 
cell in an experimental design by running the model with a combination of param-
eters. Meaningful results require careful setting of parameters to match reality and 
to determine how many data points to simulate for each condition. A good practice 
is to use theory or empirical evidence to restrict the range of parameters, either 
qualitatively or quantitatively. Another approach is to sample the parameter space to 
cover a reasonable range (Gilbert,  2008 ). For instance, Nan ( 2011 ) built an agent- 
based model to simulate IT use in organizations and used data from a case study by 
Orlikowski ( 1996 ) to set initial conditions. It is also important to include counter-
factual analysis or what is often referred to as “what-if” experiments to explore what 
might happen if parameters are to set to values different from existing empirical 
observations. 

 After the experiments, researchers should run sensitivity analysis or robustness 
checks (Davis et al.,  2007 ) to assess how sensitive simulation results are to key 
assumptions and parameters built in the model. Sensitivity analysis is the process of 
relaxing assumptions or systematically changing functions and parameters to see 
how robust simulation results are or to understand the conditions under which the 
model yields the results (Gilbert,  2008 ). Researchers can be more confi dent about 
the results if they remain stable when key constraints are relaxed or key parameters 
are varied. Sensitivity analysis can also be used to facilitate model validation. This 
practice is especially valuable when little theory or empirical evidence is available 
to inform the specifi cation of experimental parameters. One recommendation is to 
expand the parameter space to identify and report “boundary conditions” when 
simulation results no longer hold.  

    Step 7: Publish the Model and Results 

 Analogously to conducting a usability study in industry, if your only purpose of 
building an agent-based model to inform system design, you are done. However, if 
you are an academic working on peer-reviewed publications, more work still 
remains. Because many reviewers are unfamiliar with the method and because the 
details of a model are harder to describe than the details of an empirical study, it can 
be diffi cult to publish research using agent-based models. In this section, we share 
some of our experiences of reviewing and publishing simulation work. 

 Lesson 1—Write in plain English and provide enough detail about the model. 
This advice is easier said than done. Good writing is important for publishing all 
papers but especially crucial for simulation work because you must appeal to both 
domain and methodology experts and readers vary greatly in their familiarity with 
the method. Even a moderately complex model, like the one we describe below, 
might include dozens of rules, close to 100 variables and 1,300 lines of code built 
on a platform. You need to provide enough detail about how the model works, with-
out making every reader read the original program. Some common mistakes are 
failing to include all rules that determine agent behaviors (e.g., saying an agent’s 
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opinion is infl uenced by close neighbors without specifying how the infl uence 
occurs), failing to specify the order in which behaviors occur (e.g., do agents 
express their opinions fi rst and then get infl uenced or decide to switch groups or 
vice versa), or failing to clearly describe the initial conditions of virtual experi-
ments (e.g., how many agents to begin with, the rate at which new agents enter, the 
number of runs for each condition). A rule of thumb to assess whether suffi cient 
detail has been provided is that experienced modelers should be able to draft the 
pseudo code of the program based on the model description. If space permits, it is 
also a good idea to include pseudo-code, key functional forms, and a fl ow chart 
showing the sequence of actions. 

 Lesson 2—Prepare to share your code. Whether you are building on a platform 
or programming from scratch, write clear code with good documentation so that it 
can be easily read and understood by an average programmer. Some reviewers may 
request to see your code and other researchers may be interested in confi rming or 
extending your model. There are multiple ways of sharing one’s model, privately or 
publicly. One advantage of building on a platform is the ease of sharing models. For 
example, NetLogo hosts a Modeling Commons for its users to share models and 
search for others’ models (  http://modelingcommons.org/account/login    ). You can 
access our online community model at   http://dl.dropbox.com/u/11116596/
OnlineCommDesign.nlogo    . 

 Lesson 3—Be mindful of sample size when reporting simulation results. Sample 
size is determined by the number of runs for each experimental condition. Because 
it is so easy to replicate an experiment once a model is developed, reporting statisti-
cal signifi cance is insuffi cient. A reviewer comment we once received vividly illus-
trates the concern: “Could you have simulated 1,000 groups and got everything to 
be signifi cant? How did you choose [the number we had chosen in the paper]?” Our 
advice is to report effect sizes (e.g., % increase in adoption rates or number of visi-
tors for a day) in addition to statistical signifi cance.   

    Following the Roadmap: Using ABM to Inform the Design 
of Online Communities 

 In this section, we show how we have followed the seven steps and built a model to 
inform the design of online communities. We began with the research question of 
how design choices such as topical breadth, message volume, and discussion mod-
eration interact to infl uence the success of an online community. We believed agent- 
based modeling was appropriate to address the question. Online communities are 
bottom-up social structures whose success depends on the active participation and 
interaction of individual members. Members are heterogeneous in their attributes 
(e.g., interests, knowledge, experiences with the community) and motivations (e.g., 
seeking information, emotional support, reputation, entertainment, a sense of 
belonging) (Ridings & Gefen,  2004 ; Wasko & Faraj,  2005 ). When we were starting 
the project in 2006, there was a good body of knowledge from survey and 
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interviews about what motivates users to participate in online communities (Bryant, 
Forte & Bruckman,  2005 ; Ridings & Gefen,  2004 ). We were also able to ground the 
model on well-established theories from economics and social psychology around 
individual decisions to join groups, participate in collective actions, and the infl u-
ence of perceived benefi ts and costs. Agent-based modeling was a useful tool to 
integrate these theories to understand challenges of building successful online 
communities. 

 Based on our own empirical research and the literature, we decided the core 
concept to simulate was individuals’ motivation to participate. We chose the 
Expectancy Theory of motivation (Vroom, Porter & Lawler,  2005 ) and one of its 
extensions, the Collective Effort Model (Karau & Williams,  1993 ) as our basis. 
These theories assume people contribute to a group to the extent they believe their 
efforts will lead to outcomes for themselves that they value. Neither theory, how-
ever, is specifi c about the types of benefi ts that motivate people. Research on online 
communities had identifi ed six benefi ts that consistently drove participation: (1) 
information, (2) fulfi llment of altruistic or expressive needs produced by helping 
others, (3) identifi cation with the group, (4) relationships formed with group mem-
bers, (5) entertainment, fun, and other forms of intrinsic motivation, and (6) reputa-
tion and other forms of extrinsic motivation (e.g., Ren, Kraut & Kiesler,  2007 ; 
Ridings & Gefen,  2004 ; Roberts, Hann & Slaughter,  2006 ; Wasko & Faraj,  2005 ). 

 We supplemented the Expectancy Theory with other theories to operationalize 
the six benefi ts. We drew insights from theories of group identity theory (Hogg, 
 1996 ) and interpersonal bonds (Berscheid,  1994 ) to calculate social benefi ts, and we 
drew insights from resource-based theory (Butler,  2001 ) and information overload 
theory (Jones, Ravid & Rafaeli,  2004 ) to calculate informational benefi ts. Theories 
of group identity and interpersonal bonds propose that members commit and con-
tribute to a group if they feel psychologically attached to the group or its members 
(Prentice, Miller & Lightdale,  1994 ). Information overload theory proposes that 
human beings’ information processing capacity is limited and too much information 
or irrelevant information is aversive (Rogers & Agarwala-Rogers,  1975 ). 

 This is where the value of agent-based modeling’s ability to combine multiple 
theories becomes apparent. First, motivation has multiple causes, and each cause is 
typically treated by a separate social science theory. For example, information over-
load theory focuses on how informational benefi ts affect motivation while group 
identity theory focuses on the motivational infl uence of psychological attachment to 
the community. Therefore, multiple theories are needed to model motivation. 
Second, a single design choice, when routed through different theoretical lenses, 
can have divergent effects on motivation. One example is the effect of group size. 
When examined through resource-based theory of online social groups, large group 
size is a measure of resource availability and thus provides informational benefi ts. 
When examined through the Collective Effort Model (Karau & Williams,  1993 ), 
however, members of large groups tend to contribute less time and resources because 
of dilution of responsibility. When examined through the lens of interpersonal 
bonds (Frank & Anderson,  1971 ), large group size reduces motivation because it 
makes it diffi cult to form relationships with other members. Combining these effects 
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in an agent-based model allows us to better understand how potential design 
 decisions affect member motivation and contribution through multiple routes. 

 In terms of boundary conditions, we decided to focus on members, their interac-
tions, and how various design choices affect their experiences. Although theories 
from organizational ecology (Hannan & Freeman,  1989 ), which focus on intercom-
munity competition, could have been relevant, we ignored these to limit the model’s 
scope and to make model development tractable. We also excluded, for example, the 
cost of implementing the design choices primarily because our goal is to assess the 
effectiveness of various designs and partially because it is complicated to model 
costs (e.g., due to different design contexts). 

 Figure  2  depicts our conceptual model. Member actions such as reading and 
posting messages are determined by benefi ts and costs associated with participa-
tion. Reading and posting behaviors change community dynamics such as the num-
ber and quality of messages, as well as the number of members and their relationships 
with one another; these, in turn, infl uence experienced benefi ts and motivation. 
Design interventions, such as the cost of posting messages, diversity of nominal 
topics, and moderation also infl uence community dynamics.

   We then translated the conceptual model into agents’ attributes and behavior 
rules. The two behaviors that agents engage in are reading and posting messages. 
Following the utility-like logic underlying the expectancy-value theories, we 
assumed an agent (1) logs in to read messages when expected benefi t from partici-
pation exceeds expected cost, and (2) posts messages when expected benefi t from 
contributing exceeds expected cost. Details about how we calculated member 

  Fig. 2    The conceptual model       
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benefi ts can be found in Ren and Kraut ( In press ). For example, the model assumed 
that social, identity-based benefi t is a function of the extent to which agents’ inter-
ests are similar to the group’s interests, and social, bond-based benefi t is a function 
of the number of other agents with whom the agent has had repeated interactions. In 
this model, agents take actions during a simulated day, and we simulated time as 
forced parallel. All active agents in the simulated community are given the opportu-
nity to make a reading and posting decision before anyone moves to the next day. 
Messages posted the previous day are distributed to all agents the next day and used 
to update their expectations of benefi ts. 

 For a simulated day, agents could make up to three decisions. They fi rst decide 
how many messages to read. We calculated messages an agent viewed on a specifi c 
day as proportional to the amount of benefi t he received in the past from reading 
messages minus the cost of reading, capped by the total number of messages avail-
able to read. They next decide whether to post messages, which incurs greater costs 
than reading messages. If an agent decides to post a message, he makes three addi-
tional decisions: (1) whether to start a new thread or reply to an existing post; (2) the 
topic of the message and (3) which message to reply to. Based on empirical evi-
dence from Usenet groups, we assumed an agent is equally likely to start a new 
thread or to reply to one. The topic of the message is a joint function of the agent’s 
interests, topics of the messages the agent has recently viewed, and the topic of the 
replied-to message if it is a reply. Theory and empirical evidence (Fisher, Smith & 
Welser,  2006 ; Faraj & Johnson,  2011 ) suggest three common patterns of interaction 
among community members: (1) preferential attachment, in which members 
respond to popular messages or posters; (2) reciprocity, in which members respond 
to others who have written to them in the past; and (3) interest matching, in which 
members respond to messages that match their interests. We thus assumed that 
agents in the model choose to reply to a message based on the average of (1) the 
number of replies the message has received; (2) the number of times the poster of 
the message has responded to the agent; and (3) the match between message topic 
and the agent’s interests. 

 We fi rst built our model in NetLogo, a cross-platform multi-agent modeling 
environment (Wilensky,  1999 ). Figure  3  shows a snapshot of the user interface. The 
buttons in the upper-left corner allow researchers to specify the initial members, 
messages, type of the community and run time. The window on the right shows 
members in the community. The plots track statistics such as member entry, exit, 
and the number of participants and contributors. It took us a year and half to design, 
build, and validate the model. The online communities we simulated grew to have 
thousands of members including both lurkers and active contributors and thousands 
of messages. We later re-implemented it using Repast to achieve greater speed. 
A virtual experiment with 540 runs that used to take three days to run in NetLogo 
took several hours in Repast.

   We went through all three steps to ensure the validity of our model. Previous 
studies show that three statistics describing online communities—posts per mem-
ber, replies per post, and communication partners (out-degrees) per member—dem-
onstrate a power-law distribution (Fisher et al.,  2006 ; Smith,  1999 ). We used these 
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three stylized facts to calibrate the model. We constructed two data sets of  Usenet  
groups and used a set of 12 groups to calibrate the model and a new set of 25 groups 
to validate it. 

 Calibration was an iterative process. After each run, we examined mismatches 
between the simulated and the real data, reexamined model assumptions, and made 
adjustments to the model in light of theoretical reasoning, empirical evidence, or 
knowledge about how the processes in the model operate. After ten iterations of 
tweaking, the model replicated the power-law distribution for all three statistics. We 
then simulated a new set of 25 Usenet groups. We used pattern validation and com-
pared the pattern of three statistics from the model—posts per agent, replies per 
post, and out-degree ties per agent—with the pattern generated from real data. We 
also calculated Pearson correlations between the empirical data series and the simu-
lated ones and the coeffi cients ranged between 0.90 and 0.96, confi rming a good 
match between the two. 

 We used the model to explore three design decisions: How broad a set of discus-
sion topics should the community encourage? What is an optimal level of message 
volume? What type of discussion moderation if any should the community adopt? 
We designed a full-factorial experiment to simulate three levels of topical breadth 
with one, fi ve or nine topics, three levels of message volume, with an average of 10, 
15, or 20 messages per day, and three types of moderation: no moderation, 
community- level moderation (under which off-topic messages are removed), and 
personalized moderation (under which a personalization algorithm presents a subset 
of messages that match a member’s interests). We ran a 365-day simulation for each 
experimental condition on fi ve randomly constructed groups. All groups began with 
30 agents and 30 messages and evolved over time as newcomers joined and old- 
timers left. 

  Fig. 3    Interface of the online community model in NetLogo       
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 We examined the effects of topical breadth, message volume, and moderation on 
two outcomes easily visible to a community manager: the number of new posts per 
day, an indicator of community activity, and the average number of login sessions 
per member, an indicator of member commitment. We ran analysis of variance 
(ANOVA) to examine the effects of topical breadth, message volume, and modera-
tion. We also examined the benefi ts members received on the 100, 150, 200, 250, 
and 300th day of the experiment. 

 The model led to several plausible yet non-obvious fi ndings: (1) members of 
topically broad communities were more committed or visited more frequently than 
members of topically narrow communities, although they did not post more mes-
sages, (2) community-level moderation led to greater commitment but not contribu-
tion, and (3) personalized moderation outperformed community-level moderation in 
communities with broad topical focus and high message volume. These results can 
be partially explained as a critical trade-off between informational and relational 
benefi ts, which the simulation revealed. For example, having more topics to discuss, 
on the one hand, increases informational benefi ts because it increases the number of 
messages likely to match one’s interest; on the other hand, it reduces relational ben-
efi t because it reduces the chance of two members sharing a common interest. 

 To assure the robustness of our results, we ran a series of sensitivity analyses by 
relaxing key assumptions and varying key parameters. Results did not differ sub-
stantially. Some of the key parameters we varied were: the likelihood of posting a 
new message in a day (from 30 to 70 %), the criterion to be recognized as an active 
contributor (from top being in the top 5 % to the top 20 %), and the accuracy of 
personalization (from 60 to 100 %). 

 In terms of design implications, the simulation results call for reconsideration of 
well-established beliefs in the effectiveness of a narrow focus (Maloney-Krichmar 
& Preece,  2005 ) and community-level moderation (Preece,  2000 ). While these 
practices remain useful for some communities, our research suggests a contingency 
view of online community design. There is no universally optimal design for all 
online communities. The optimal choice depends on community characteristics 
(topical breadth and message volume) and the specifi c goals designers wish to 
accomplish (to make members loyal or to increase their contribution).  

    How We Discovered Agent-Based Modeling 
and Useful References 

 We were asked to also talk about our personal stories with agent-based modeling. 
For the fi rst author, it could be traced to a belief she had since childhood that we 
could “simulate” (although at that time she did not know the word) and predict 
human society as accurately as we could predict the physical world. Serendipity 
also played a role when she started graduate school at Carnegie Mellon University 
working as a research assistant for Kathleen Carley, who is an expert in computa-
tional social and organizational theory. Later, she began conducting fi eld studies and 
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experiments because it was considered risky to do just simulation research (which 
may still be true in some disciplines). Years later, however, she enjoys and benefi ts 
greatly from being able to study a phenomenon using multiple methods including 
agent-based modeling. 

 The second author had been intrigued by the methodology for a long time and 
offered the fi rst author a postdoctoral position, which started our years of collabora-
tion to study online communities using various methods including agent-based 
modeling. So if you are foreign to the method, teaming up with someone who has 
done it can help you climb the learning curve. We should note that like other research 
skills, agent-based modeling is easy to learn but hard to do well. Experiences help 
and familiarity with the domain which you study helps as well. In addition, Axelrod 
( 2005 ) has a book chapter in which he shares his experience of building the model 
to study the Prisoner’s Dilemma game and his success as well as struggles of work-
ing with researchers from other disciplines and publishing his interdisciplinary 
work. It is a fun read. 

    Here is a list of papers that we have found useful and recommend as additional 
references:

•    Schelling, T. C. ( 1969 ). Models of segregation.  American Economic Review , 
59(2), 488–493.  

•   Reynolds, C. W. ( 1987 ). Flocks, herds, and schools: A distributed behavioral 
model.  Computer Graphics , 21(4), 25–34.  

•   Harrison, J. R., & Carrol, G. R. ( 1991 ). Keeping the faith: A model of cultural 
transmission in formal organizations.  Administrative Science Quarterly , 36(4), 
552–582.  

•   Carley, K. M. ( 1991 ). A theory of group stability.  American Sociological Review , 
56(3), 331–354.  

•   March, J. G. ( 1991 ). Exploration and exploitation in organizational learning. 
 Organization Science , 2(1), 71–87.  

•   Carley, K. M. ( 1992 ). Organizational learning and personnel turnover. 
 Organizational Science , 3(1), 20–46.  

•   Epstein, J. M., & Axtell, R. L. ( 1996 ).  Growing Artifi cial Societies: Social 
Science from the Bottom Up . Boston, MA: MIT Press.  

•   Axelrod, R. ( 1997 ).  The complexity of cooperation: agent based models of 
 competition and collaboration . Princeton, NJ: Princeton University Press.  

•   Macy, M. W., & Willer, R. ( 2002 ). From factors to actors: computational sociology 
and agent-based modeling,  Annual Review of Sociology,  28:143–166.     

    Concluding Remarks 

 To summarize, in this chapter, we presented a roadmap of how to use agent-based 
modeling to synthesize multiple social science theories to inform the design of 
multiuser systems, using our model on online community design as an example. 
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We encourage HCI researchers to consider either building your own agent-based 
 models or adapting existing models as a new way of understanding and addressing 
challenges in designing multiuser systems. Researchers and designers can collabo-
rate to perform “full-cycle research” (Chatman & Flynn,  2005 ) by alternating 
between agent-based modeling and fi eld experiments and using the two to comple-
ment one another—the former to combine theories and generate new predictions 
and the latter to test the redesigns informed by simulation results. Once developed 
and validated, the agent-based model can be continuously extended to incorporate 
new theories or study new design choices. It can also serve a test bed to help 
designers navigate design spaces and choose features that fi t their design goals. We 
also foresee the possibility of building agent-based models as collaboration 
 platforms to allow researchers from different disciplines to collectively tackle for-
midable design challenges.  

    Exercises 

     1.    Name some social behavior that might be amenable to agent based modeling, 
outside of the ones listed in this chapter.   

   2.    Where do the rules come from that determine the agents’ behaviors?         
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